• 제목/요약/키워드: feature combination

검색결과 512건 처리시간 0.024초

Trace 변환과 펴지 기법을 이용한 곤충 발자국 인식 (Insect Footprint Recognition using Trace Transform and a Fuzzy Method)

  • 신복숙;차의영;우영운
    • 한국멀티미디어학회논문지
    • /
    • 제11권11호
    • /
    • pp.1615-1623
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 찾아 개체를 인식하기 위해서, 개선된 SOM 알고리즘과 ART2 알고리즘을 사용하여 인식의 기본 영역을 추출한다. 또한 Trace 변환을 이용하여 발자국의 인식에 필요한 특징을 추출하고 개체를 판단하는 기법을 제안한다. 제안한 기법에서는 모폴로지 기법을 이용하여 region을 먼저 찾고, 개선된 SOM과 ART2 알고리즘을 이용하여 곤충의 크기와 종류에 관계없이 세그먼트를 추출한다. 그리고 곤충 발자국과 같이 다양한 변형이 존재하는 패턴에 적합한 특징값을 찾기 위해서 Trace 변환을 이용하고, 함수의 조합으로 재구성된 Triple 특징값을 이용하여 곤충별로 고유한 패턴을 찾아 인식 실험을 수행한다. 곤충 발자국에서 명확한 발자국과 그렇지 못한 발자국을 자동으로 결정하는 것이 매우 어렵다. 따라서 이와 같이 불확실한 대상을 제외시키지 않고 가능성의 대상으로 판단하고 분류하기 위해서 퍼지 가중치 평균을 이용하여 인식을 수행한다. 제안한 방법에 의한 곤충 발자국의 영역 추출과 인식 실험을 실시하고 그 결과를 제시하였다.

  • PDF

A Noisy-Robust Approach for Facial Expression Recognition

  • Tong, Ying;Shen, Yuehong;Gao, Bin;Sun, Fenggang;Chen, Rui;Xu, Yefeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.2124-2148
    • /
    • 2017
  • Accurate facial expression recognition (FER) requires reliable signal filtering and the effective feature extraction. Considering these requirements, this paper presents a novel approach for FER which is robust to noise. The main contributions of this work are: First, to preserve texture details in facial expression images and remove image noise, we improved the anisotropic diffusion filter by adjusting the diffusion coefficient according to two factors, namely, the gray value difference between the object and the background and the gradient magnitude of object. The improved filter can effectively distinguish facial muscle deformation and facial noise in face images. Second, to further improve robustness, we propose a new feature descriptor based on a combination of the Histogram of Oriented Gradients with the Canny operator (Canny-HOG) which can represent the precise deformation of eyes, eyebrows and lips for FER. Third, Canny-HOG's block and cell sizes are adjusted to reduce feature dimensionality and make the classifier less prone to overfitting. Our method was tested on images from the JAFFE and CK databases. Experimental results in L-O-Sam-O and L-O-Sub-O modes demonstrated the effectiveness of the proposed method. Meanwhile, the recognition rate of this method is not significantly affected in the presence of Gaussian noise and salt-and-pepper noise conditions.

통합된 시스템에서의 얼굴검출과 인식기법 (An Integrated Face Detection and Recognition System)

  • 박동희;배철수
    • 한국정보통신학회논문지
    • /
    • 제7권6호
    • /
    • pp.1312-1317
    • /
    • 2003
  • 본 논문에서는 임의의 장면에도 얼굴 인식에 영향을 받지 않는 통합된 얼굴 인식 방법을 제안한다. 크기 정규화는 피부 색 분할과 log-polar 매핑 절차의 새로운 조합을 통하여 얻어지고, 주요 얼굴 구성 요소 분석은 자세 변화들을 처리하기 위하여 제안된 멀티 뷰 접근을 통해 이루어진다. 주어진 컬러 입력 이미지로부터 검출기는 얼굴을 원형 경계 안에 둘러싸고 코의 위치를 표시하며 다음 인식을 위해, 원형 경계 내에 배치하는 방사형 격자는 특징 벡터 코 중심에 두었다. 컬러로 분할된 영역의 폭으로서 얼굴의 크기를 평가하고, 추출된 특정 벡터는 평가된 크기에 의하여 정규화 된 크기이다. 특징 벡터는 얼굴 인식을 위해 훈련된 신경망 분류자에게 입력된다. 시스템은 서로 다른 복합적인 배경에서 다양한 크기와 자세를 가진 20 명의 얼굴 데이터 베이스를 사용하여 실험한 결과 얼굴 인식기의 수행능력은 매우 작은 크기의 얼굴 이미지 외에는 87%에서 92%의 평균 인식율을 얻을 수 있었다.

은닉 마르코프 모델을 이용한 동영상 기반 낙상 인식 알고리듬 (Video Based Fall Detection Algorithm Using Hidden Markov Model)

  • 김남호;유윤섭
    • 전자공학회논문지
    • /
    • 제50권8호
    • /
    • pp.232-237
    • /
    • 2013
  • 동영상에서 추출한 변수값을 은닉 마르코프 모델(Hidden Markov Model; HMM)에 적용한 새로운 낙상 인식 알고리듬을 제안한다. 개인간 낙상 양식의 차이나 유사 낙상을 실제 낙상과 구분하기 위한 기계 학습 방법으로 HMM알고리듬을 사용하였다. 비디오의 낙상 특징 변수를 얻기 위해 동영상의 광류를 구한 후 이를 주성분 분석 방식에 적용하여 움직임을 정량화하였다. 주성분 분석으로 얻어진 전체 움직임 벡터의 각도, 장단축의 비, 속도등의 조합으로 새로운 여러 종류의 낙상 특징 변수를 정의한 후 이를 HMM에 적용하여 결과를 비교, 분석하였다. 이들 변수들 중에 각도에 의해 얻어진 변수가 가장 좋은 결과를 보여 본 실험에서 91.5%의 민감도(성공 감지율)와 88.01% 의 특이도(실패 감지율)를 나타내었다.

문자 별 특징 모델을 이용한 한글 문서 영상에서 키워드 검색 (Keyword Spotting on Hangul Document Images Using Character Feature Models)

  • 박상철;김수형;최덕재
    • 정보처리학회논문지B
    • /
    • 제12B권5호
    • /
    • pp.521-526
    • /
    • 2005
  • 본 논문에서는 저 품질의 한글 문서 영상에서 OCR 기반 검색 시스템의 대안으로 키워드 검출 시스템(Keyword Spotting)을 제안하고 OCR 기반 문서 검색 시스템과 비교한다. 제안 시스템은 문자 분할, 키워드 특징 추출 그리고 단어 매칭으로 구성된다. 문자 분할 단계에서는 인접한 두 문자간의 연결을 효과적으로 분리하면서 문자 넓이 값의 분산이 최소가 되도록 하는 문자 분할 방법을 제안한다. 키워드 특징은 서체별 문자 모델의 결합으로 구성한다. 단어 매칭 단계에서는 문자 매칭에 기반한 단어 대 단어 매칭 방법을 적용한다. 본 논문에서 제안한 키워드 검출 시스템의 성능을 평가하기 위해 한글 문서 영상을 대상으로 OCR 기반 문서 검색 시스템과 비교하였다. 그 결과 한글 글자 크기가 작고 문서의 상태가 좋지 않은 경우 제안한 키워드 검출 시스템에 의한 검색 성능이 OCR 기반 검색 시스템 보다 우수함을 입증하였다.

멀티 신호를 이용한 환경 인식 성능 개선 (Improvement of Environment Recognition using Multimodal Signal)

  • 박준규;백성준
    • 한국콘텐츠학회논문지
    • /
    • 제10권12호
    • /
    • pp.27-33
    • /
    • 2010
  • 본 연구에서는 9가지 환경에서 마이크로폰과 자이로센서, 가속도센서를 이용하여 얻은 데이터를 특징 추출한 후 각 특징들을 조합하여 GMM (Gaussian Mixture Model)을 이용한 분류실험을 수행하였다. 기존의 환경 인식에 관한 연구들에서는 주로 마이크로폰을 이용한 환경음 데이터를 통해 인식주체의 환경 상황을 인식하고자 하였으나, 여러 노이즈들이 결합한 형태로 좋은 특징을 얻기 어려운 환경음의 구조적 특성으로 인해 그 인식 성능에 한계가 있었다. 이에 본 연구에서는 환경상황을 인식하기 위한 또 다른 방법으로 인식주체의 움직임 특성을 반영하기 위해 자이로센서와 가속도센서의 데이터를 특징에 추가 적용하는 방식을 제안하였다. 실험결과 따르면 마이크로폰을 통해 얻은 환경음의 특징만을 이용하는 기존의 방식들에 비해 가속도센서를 통해 얻은 데이터를 기존의 환경음 특징벡터와 조합한 경우에서 5% 이상 평균 인식률이 개선되는 것을 확인할 수 있었다.

실내공간에 사용되는 재활용 신재료의 소재 및 가공방법 연구 (A Study on the Base Material Specific and Processing Methods of Recycled New Materials in Space)

  • 서지은;정희정
    • 한국실내디자인학회논문집
    • /
    • 제21권3호
    • /
    • pp.22-30
    • /
    • 2012
  • Nowadays the issue of environmental pollution and ecological destruction is not a simple issue but an important issue to be continuously considered. It is deemed that a study for recycled new materials is immediately required and this study is to analyze features and processing methods of new materials which can be used to interior space. We found the recycled new materials used for space through researching various web sits. And then we analyzed what the base materials are and classified that base materials are whether natural or artificial of the recycled materials. We classified processing methods of the recycled new materials after researching general processing methods. The result of this study would be an important material to the research and development of new finishing materials with consideration of environment and to the research for a guideline of applicable new materials. The results of this study are as follows : First, we could classify widely 2 categories into natural material and artificial material and then 10 subcategories into metal, glass, wood, rubber, stone, plastic, leather or fabric, ceramic, concrete and so on, and analyzed that which material is mostly used and whether it is single material or multiple material. In order to analyze the feature of processing method. Second, we could classify into 4 categories such as junction, surface process, molding, and insert, and found out which processing method is applied based on objects of research. Third, as an analysis result of the recycled new material feature, in order to develop various new materials, it is required to study on combination and application of 2 materials or more rather than single material. Four, as a analysis result of the processing method feature, I would like to suggest that development and application of various processing methods are required. Especially, it is necessary to grope for a way to develop new functional materials for interior space through a systemic research and analysis of processing method of other fields. Furthermore, a way to reuse recycled new materials should be considered in a stage of selection and application of processing method.

  • PDF

채널 강조와 공간 강조의 결합을 이용한 딥 러닝 기반의 초해상도 방법 (Deep Learning-based Super Resolution Method Using Combination of Channel Attention and Spatial Attention)

  • 이동우;이상훈;한현호
    • 한국융합학회논문지
    • /
    • 제11권12호
    • /
    • pp.15-22
    • /
    • 2020
  • 본 논문은 채널 강조(Channel Attentin)와 공간 강조(Spatial Attention) 방법을 결합한 딥 러닝 기반의 초해상도 방법을 제안하였다. 초해상도 과정에서 질감, 특징과 같은 주변 픽셀의 변화량이 큰 고주파 성분의 복원이 중요하다. 채널 강조와 공간 강조를 결합한 특징 강조를 이용한 초해상도 방법을 제안하였다. 기존의 CNN(Convolutional Neural Network) 기반의 초해상도 방법은 깊은 네트워크의 학습이 어려우며, 고주파 성분의 강조가 부족하여 윤곽선이 흐려지거나 왜곡이 발생한다. 문제를 해결하기 위해 스킵-커넥션(Skip Connection)을 적용한 채널 강조와 공간 강조를 결합한 강조 블록과 잔차 블록(Residual Block)을 사용하였다. 방법으로 추출한 강조된 특징 맵을 부-픽셀 컨볼루션(Sub-pixel Convolution)을 통해 특징맵을 확장하여 초해상도를 진행하였다. 이를 통해 기존의 SRCNN과 비교하여 약 PSNR는 5%, SSIM은 3% 향상되었으며 VDSR과 비교를 통해 약 PSNR는 2%, SSIM은 1% 향상된 결과를 보였다.

2D 전립선 단면 영상에서 영역 분류를 위한 라디오믹스 기반 바이오마커 검증 연구 (Radiomics-based Biomarker Validation Study for Region Classification in 2D Prostate Cross-sectional Images)

  • 박준영;김영재;김지섭;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권1호
    • /
    • pp.25-32
    • /
    • 2023
  • Recognizing the size and location of prostate cancer is critical for prostate cancer diagnosis, treatment, and predicting prognosis. This paper proposes a model to classify the tumor region and normal tissue with cross-sectional visual images of prostatectomy tissue. We used specimen images of 44 prostate cancer patients who received prostatectomy at Gachon University Gil Hospital. A total of 289 prostate slice images consist of 200 slices including tumor region and 89 slices not including tumor region. Images were divided based on the presence or absence of tumor, and a total of 93 features from each slice image were extracted using Radiomics: 18 first order, 24 GLCM, 16 GLRLM, 16 GLSZM, 5 NGTDM, and 14 GLDM. We compared feature selection techniques such as LASSO, ANOVA, SFS, Ridge and RF, LR, SVM classifiers for the model's high performances. We evaluated the model's performance with AUC of the ROC curve. The results showed that the combination of feature selection techniques LASSO, Ridge, and classifier RF could be best with an AUC of 0.99±0.005.

gradCam을 사용한 얼굴인식 신경망 (Face Recognition Network using gradCAM)

  • 백찬형;권지훈;정호엽
    • 스마트미디어저널
    • /
    • 제12권2호
    • /
    • pp.9-14
    • /
    • 2023
  • 이 논문에서는 gradCAM를 활용한 적은 데이터로 얼굴 전체 또는 더 다양한 feature을 사용하여 얼굴인식을 할 수 있는 새로운 앙상블 방법론을 제안하였다. 인공지능 모델의 판단 근거는 gradCAM을 통하여 saliency map으로 표현될 수 있다. 따라서 본 논문에서는 학습된 얼굴인식 모델이 어느 부분에 편향적으로 관찰하여 판단했는지 gradCAM으로 시각화한다. 계산된 saliency map에서 일정 수치 이상의 돌출된 부분을 추가 모델이 학습에 사용할 수 없도록 노이즈를 추가해 데이터를 생산한다. 노이즈를 추가해서 만든 데이터로 학습할 경우 노이즈 부분을 활용하여 학습을 할 수 없으므로 새로운 얼굴 부분을 사용하여 얼굴인식 네트워크를 학습하게 된다. 기본 데이터로 학습한 네트워크와 돌출 부분에 노이즈를 추가해서 학습한 모델은 얼굴의 서로 다른 얼굴 feature을 사용할 수밖에 없고, 앙상블로 결합했을 때 얼굴의 좀 더 다양한 부분들을 사용한 임베딩 feature를 만들 수 있다. 이 논문에서 제안하는 앙상블 기법은 일반적인 앙상블 모델보다 정확도는 1.79% 상승하였고 equal error rate (EER)은 0.01788 감소하였다.