• Title/Summary/Keyword: feature coding

Search Result 204, Processing Time 0.028 seconds

Age Estimation via Selecting Discriminated Features and Preserving Geometry

  • Tian, Qing;Sun, Heyang;Ma, Chuang;Cao, Meng;Chu, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1721-1737
    • /
    • 2020
  • Human apparent age estimation has become a popular research topic and attracted great attention in recent years due to its wide applications, such as personal security and law enforcement. To achieve the goal of age estimation, a large number of methods have been pro-posed, where the models derived through the cumulative attribute coding achieve promised performance by preserving the neighbor-similarity of ages. However, these methods afore-mentioned ignore the geometric structure of extracted facial features. Indeed, the geometric structure of data greatly affects the accuracy of prediction. To this end, we propose an age estimation algorithm through joint feature selection and manifold learning paradigms, so-called Feature-selected and Geometry-preserved Least Square Regression (FGLSR). Based on this, our proposed method, compared with the others, not only preserves the geometry structures within facial representations, but also selects the discriminative features. Moreover, a deep learning extension based FGLSR is proposed later, namely Feature selected and Geometry preserved Neural Network (FGNN). Finally, related experiments are conducted on Morph2 and FG-Net datasets for FGLSR and on Morph2 datasets for FGNN. Experimental results testify our method achieve the best performances.

A Multimodal Fusion Method Based on a Rotation Invariant Hierarchical Model for Finger-based Recognition

  • Zhong, Zhen;Gao, Wanlin;Wang, Minjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.131-146
    • /
    • 2021
  • Multimodal biometric-based recognition has been an active topic because of its higher convenience in recent years. Due to high user convenience of finger, finger-based personal identification has been widely used in practice. Hence, taking Finger-Print (FP), Finger-Vein (FV) and Finger-Knuckle-Print (FKP) as the ingredients of characteristic, their feature representation were helpful for improving the universality and reliability in identification. To usefully fuse the multimodal finger-features together, a new robust representation algorithm was proposed based on hierarchical model. Firstly, to obtain more robust features, the feature maps were obtained by Gabor magnitude feature coding and then described by Local Binary Pattern (LBP). Secondly, the LGBP-based feature maps were processed hierarchically in bottom-up mode by variable rectangle and circle granules, respectively. Finally, the intension of each granule was represented by Local-invariant Gray Features (LGFs) and called Hierarchical Local-Gabor-based Gray Invariant Features (HLGGIFs). Experiment results revealed that the proposed algorithm is capable of improving rotation variation of finger-pose, and achieving lower Equal Error Rate (EER) in our homemade database.

Bayesian-theory-based Fast CU Size and Mode Decision Algorithm for 3D-HEVC Depth Video Inter-coding

  • Chen, Fen;Liu, Sheng;Peng, Zongju;Hu, Qingqing;Jiang, Gangyi;Yu, Mei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1730-1747
    • /
    • 2018
  • Multi-view video plus depth (MVD) is a mainstream format of 3D scene representation in free viewpoint video systems. The advanced 3D extension of the high efficiency video coding (3D-HEVC) standard introduces new prediction tools to improve the coding performance of depth video. However, the depth video in 3D-HEVC is time consuming. To reduce the complexity of the depth video inter coding, we propose a fast coding unit (CU) size and mode decision algorithm. First, an off-line trained Bayesian model is built which the feature vector contains the depth levels of the corresponding spatial, temporal, and inter-component (texture-depth) neighboring largest CUs (LCUs). Then, the model is used to predict the depth level of the current LCU, and terminate the CU recursive splitting process. Finally, the CU mode search process is early terminated by making use of the mode correlation of spatial, inter-component (texture-depth), and inter-view neighboring CUs. Compared to the 3D-HEVC reference software HTM-10.0, the proposed algorithm reduces the encoding time of depth video and the total encoding time by 65.03% and 41.04% on average, respectively, with negligible quality degradation of the synthesized virtual view.

Pyramid Feature Compression with Inter-Level Feature Restoration-Prediction Network (계층 간 특징 복원-예측 네트워크를 통한 피라미드 특징 압축)

  • Kim, Minsub;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.283-294
    • /
    • 2022
  • The feature map used in the network for deep learning generally has larger data than the image and a higher compression rate than the image compression rate is required to transmit the feature map. This paper proposes a method for transmitting a pyramid feature map with high compression rate, which is used in a network with an FPN structure that has robustness to object size in deep learning-based image processing. In order to efficiently compress the pyramid feature map, this paper proposes a structure that predicts a pyramid feature map of a level that is not transmitted with pyramid feature map of some levels that transmitted through the proposed prediction network to efficiently compress the pyramid feature map and restores compression damage through the proposed reconstruction network. Suggested mAP, the performance of object detection for the COCO data set 2017 Train images of the proposed method, showed a performance improvement of 31.25% in BD-rate compared to the result of compressing the feature map through VTM12.0 in the rate-precision graph, and compared to the method of performing compression through PCA and DeepCABAC, the BD-rate improved by 57.79%.

Depth Map Coding Using Histogram-Based Segmentation and Depth Range Updating

  • Lin, Chunyu;Zhao, Yao;Xiao, Jimin;Tillo, Tammam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1121-1139
    • /
    • 2015
  • In texture-plus-depth format, depth map compression is an important task. Different from normal texture images, depth maps have less texture information, while contain many homogeneous regions separated by sharp edges. This feature will be employed to form an efficient depth map coding scheme in this paper. Firstly, the histogram of the depth map will be analyzed to find an appropriate threshold that segments the depth map into the foreground and background regions, allowing the edge between these two kinds of regions to be obtained. Secondly, the two regions will be encoded through rate distortion optimization with a shape adaptive wavelet transform, while the edges are lossless encoded with JBIG2. Finally, a depth-updating algorithm based on the threshold and the depth range is applied to enhance the quality of the decoded depth maps. Experimental results demonstrate the effective performance on both the depth map quality and the synthesized view quality.

Detection of Frame Deletion Using Coding Pattern Analysis (부호화 패턴 분석을 이용한 동영상 삭제 검출 기법)

  • Hong, Jin Hyung;Yang, Yoonmo;Oh, Byung Tae
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.734-743
    • /
    • 2017
  • In this paper, we introduce a technique to detect the video forgery using coding pattern analysis. In the proposed method, the recently developed standard HEVC codec, which is expected to be widely used in the future, is used. First, HEVC coding patterns of the forged and the original videos are analyzed to select the discriminative features, and the selected feature vectors are learned through the machine learning technique to model the classification criteria between two groups. Experimental results show that the proposed method is more effective to detect frame deletions for HEVC-coded videos than existing works.

Interactive Multiview Contents Authoring System based on MPEG-4 (MPEG-4 기반 대화형 복수시점 영상콘텐츠 저작 시스템)

  • Lee, In-Jae;Ki, Myung-Seok;Kim, Wook-Joong;Kim, Kyu-Heon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.209-212
    • /
    • 2005
  • This paper introduces interactive multi-view contents authoring system based on MPEG-4. The MPEG-4 standard, which aims to provide an object based audiovisual coding tool, has been developed to address the emerging needs from communications, interactive broadcasting as well as from mixed service models resulting from technological convergence. Due to the feature of object based coding, it has been considered that MPEG-4 is the most suitable for interactive broadcasting content production. This feature is suitable for creation of the content which provides multiple views of object or scene in interactive manner. In this paper, we categorize the multi-view visual content into two types: panoramic multi-view content and object multi-view content. And design and implementation of the authoring system for interactive multi-view contents is presented. We believe that the proposed method can be effectively used for further deployment of MPEG-4 content to various interactive applications.

  • PDF

Multi-code Biorthogonal Code Keying with Constant Amplitude Coding using Interleaving and $Q^2PSK$ for maintaining a Constant Amplitude feature and increasing Bandwidth Efficiency (정 진폭 부호화된 Multi-code Biorthogonal Code Keying 시스템에서 인터리빙과 $Q^2PSK$를 이용하여 정 진폭 특성을 유지하면서 대역폭 효율을 개선시키는 방안)

  • Kim, Sung-Pil;Kim, Myoung-Jin
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.427-430
    • /
    • 2005
  • A multi-code biorthogonal code keying (MBCK) system consists of multiple waveform coding blocks, and the sum of output codewords is transmitted. Drawback of MBCK is that it requires amplifier with high linearity because its output symbol is multi-level. MBCK with constant amplitude precoding block (CA-MBCK) has been proposed, which guarantees sum of orthogonal codes to have constant amplitude. The precoding block in CA-MBCK is a redundant waveform coder whose input bits are generated by processing the information bits. Redundant bits of constant amplitude coded CA-MBCK are not only used to make constant amplitude signal but also used to improve the BER performance at the receiver. In this paper, we proposed a transmission scheme which combines CA-MBCK with $Q^2PSK$ modulation to improve bandwidth efficiency of CA-MBCK and also uses chip interleaving to maintain a constant amplitude feature of CA-MBCK. bandwidth efficiency of a proposed transmission scheme is increased fourfold. And the BER performance of the scheme is same as that of CA-MBCK.

  • PDF

Feature map reordering for Neural Network feature map coding (신경망 특징맵 부호화를 위한 특징맵 재배열 방법)

  • Han, Heeji;Kwak, Sangwoon;Yun, Joungil;Cheong, Won-Sik;Seo, Jeongil;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.180-182
    • /
    • 2020
  • 최근 IoT 기술이 대중화됨에 따라 커넥티드 카, 스마트 시티와 같은 machine-to-machine 기술의 활용 분야가 다양화되고 있다. 이에 따라, 기계 지향 비디오 처리 및 부호화 기술에 대한 연구분야에 산업계와 학계의 관심 역시 집중되고 있다. 국제 표준화 단체인 MPEG은 이러한 추세를 반영하여 기존 비디오 부호화 표준을 개선할 새로운 표준을 수립하기 위해 Video Coding for Machines (VCM) 그룹을 구성하여 기계 소비를 대상으로 하는 비디오 표준의 표준화를 진행하고 있다. 이에 본 논문에서는 VCM이 기계 소비를 대상으로 진행하고 있는 특징맵 부호화의 부호화 효율을 개선하기 위해 특징맵을 시간적, 공간적으로 재정렬하는 방법을 제안한다. 실험 결과, 제안 방법이 CityScapes의 검증 세트 내 일부 이미지에 대해 시간적 재정렬을 수행한 결과 random access 조건에서 최대 1.48%의 부호화 효율이 향상됨이 확인되었다.

  • PDF

Feature map channel reordering and compression for Neural Network feature map coding (신경망 특징맵 부호화를 위한 특징맵 재배열 및 압축 방법)

  • Han, Heeji;Kwak, Sangwoon;Yun, Joungil;Cheong, Won-Sik;Seo, Jeongil;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.39-42
    • /
    • 2021
  • 최근 영상 혹은 비디오를 이용한 신경망 기반 기술들이 활발히 응용되고 있으며, 신경망이 처리하는 임무도 다양하고 복잡해지고 있다. 이러한 신경망 임무의 다양성과 복잡성은 더욱 많은 비디오 데이터를 요구하기 때문에 비디오 데이터를 효과적으로 전송할 방법이 필요하다. 이에 따라 국제 표준화 단체인 MPEG 에서는 신경망 기계 소비에 적합한 비디오 부호화 표준 개발을 위해서 Video Coding for Machines 표준화를 진행하고 있다. 본 논문에서는 신경망의 특징 맵 부호화 효율을 개선하기 위해 특징 맵 채널 간의 유사도가 높도록 특징맵 채널을 재배열하여 압축하는 방법을 제안한다. 제안 방법으로 VCM 의 OpenImages 데이터셋의 5000 개 검증 영상 중 임의 선택된 360 개 영상에 대해 부호화 효율을 평가한 결과, 객체 검출 임무의 정확도가 유지되면서 모든 양자화 값에 대해 화소당 비트수가 감소했으며, BD-rate 측면에서 2.07%의 부호화 이득을 얻었다.

  • PDF