• Title/Summary/Keyword: faunal

Search Result 156, Processing Time 0.034 seconds

The Selection of Appropriate Sampler for the Assessment of Macrobenthos Community in Saemangeum, the West Coast of Korea (새만금 외해역에서 대형 저서동물 군집 조사를 위한 적정 채집기의 선택)

  • 유재원;김창수;박미라;이형곤;이재학;홍재상
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.285-294
    • /
    • 2003
  • To select an appropriate sampler for the environmental monitoring survey in coastal waters of Saemangeum, Jeollabuk-do, a macrobenthic sampling was conducted in April 2002. Employed samplers were dredge (type Charcot), a semi-quantitative sampler and Smith-McIntyre (SM) and van Veen grab (VV) as quantitative ones. One haul was tried for dredge and 3 replicates (0.1 ㎡${\times}$3) for SM and W at each of 11 stations. Comparisons of sediment volume in sampler bucket and of precision of biological parameters (i.e., density, biomass, species number and diversity index, H') were made between SM and VV. Sediment volume was significantly different (SM > VV) at p-value of 0.0050 (paired t-test) and, in average, 3 replicate samples of SM and VV satisfied a precision level of 0.2 by applying 4th root transformation. Patterns of observed and expected species numbers and H' were compared. Dredge-VV samples showed higher affinity than any other pair. Several dominant species in the area were underestimated in dredge samples (e.g., polychaete Heteromastus filiformis. Aricidea assimilis etc.). Quantifying the agreement pattern of multi-species responses was accomplished by estimating correlations between similarity matrices. Correlation between dredge and VV was slightly higher, but near-per-fect matches were found in general. Different ranks and composition among principal species lists were presumably linked to the effect of penetration depth that differs among samplers. Lower level of some species' abundance in VV samples (ca. 50% compared with those of SM) was explained in this context. It seem appropriate to regard the effect as a probable cause of relatively higher correlations in dredge-VV, Overall bio-logica1 features indicated that a better choice could be SM in situations of requiring high data quality. The others work well, however, on observing and defining faunal characteristics and their capability cannot be questionted if we do not expect a first-order quality.

Spatio-Temporal Distribution of Benthic Polychaetous Community along the South-eastern Coast of Geoje Is. (거제도 남동부 연안 저서다모류군집의 시.공간적 분포)

  • Lim, Kyeong-Hun;Lee, Jung-Ho;Shin, Hyun-Chool
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.4
    • /
    • pp.392-407
    • /
    • 2006
  • This study was seasonally undertaken to investigate the benthic polychaetous community along the South-eastern coast of Geoje Is., in February 2004 to November. The macrobenthic fauna showed mean density of 953 md. $m^{-2}$ in February, 1,193 ind. $m^{-2}$ in May, 1,130 ind. $m^{-2}$ in September and 991 ind. $m^{-2}$ in November. Major faunal groups are polychaetes, crustaceans and mollusks, corresponding to 81.6%, 7.9%, 7.0% in total mean density during the sampling seasons, respectively. There was significant difference (two-way ANOVA, p<0.001) among stations in densities of polychaetes. But no significant relationship could be found between the densities of polychaetes and sampling seasons (two-way ANOVA, p>0.05). The density and the species number of polychaetes were high in the coastal area near the Jisepo port, independent of sampling seasons. Several indicator species for the organically enriched environments such as Lumbrineris longifolia, Tharyx sp., Heteromastus filiformis showed high densities during all study periods. Also Magelona japonica included in Ecolgical group I was the most abundant in the whole study period except for February. Cluster analysis on the basis of the species composition showed that the study area could be divided into 3 regions. The density of benthic polychaetes in the coastal area near Jisepo was higher than that in the other assemblages of the study area, due to some predominant opportunistic species, such as Lumbrineris longifolia, Tharyx sp. and Heteromastus filiformis. In addition, the two-way ANOVA showed significant differences among the distribution of AMBI (AZTI's Marine Biotic Index) values, both in sampling stations (p<0.001) and seasons (p<0.01). According to the classification proposed by Borja et at. (2000), the study area was slightly disturbed site.

Environmental Assessment of the Shihwa Lake by using the Benthic Pollution Index (저서오염지수(BPI)를 이용한 시화호 환경평가)

  • Lee, Jae-Hac;Park, Ja-Yang;Lee, Hyung-Gon;Park, Heung-Sik;Kim, Dong-Sung
    • Ocean and Polar Research
    • /
    • v.25 no.2
    • /
    • pp.183-200
    • /
    • 2003
  • In order to assess the ecological changes induced by organic pollutants of the Shihwa Lake, BPI (Benthic Pollution Index) based on the benthic faunal community was employed. It was modified from Infaunal Trophic Index (ITI), and recommended as a pollution detecting method for the environmental assessment. The BPI values were calculated from the benthos data, which were collected for three terms: in 1980, before the Shihwa Lake was built up; in 1994-1997, which the Shihwa Lake was completely isolated from the outer seawater; in 1997-1999, after inflow of the outer seawater. Since the Shihwa Dike was constructed in February 1994, the pollution intensity of the lake had been increased from the narrow and inner part of the former Gyeonggi Bay and spread fast along the coast line of the Shihwa Lake. Then, in 1996 it showed the very high BPI levels all around the Lake. This serious polluted condition had been lasted till 1997, when the inflow of the seawater was begun. In 1998, from the nearest part of the Shihwa Gate, the BPI levels gradually became low in most area of the Lake, except its inner and narrow part. These greatly lowered BPI levels mean that the seawater inflow could be assumed to affect positively in the lake. Furthermore, BPI gave the same results from the other environmental assessment based on the abundance and the species richness of macrobenthic community. It shows that BPI could be useful as an effective method to assess the marine environment and evaluate the status of environmental conditions.

The Community Structure of Macrobenthic Assemblages in the Taehwa River Estuary, Ulsan, Korea (울산 태화강 하구역에 서식하는 대형저서동물의 군집구조)

  • Kim, Hyung-Chul;Choi, Byoung-Mi;Jung, Rae-Hong;Lee, Won-Chan;Yun, Jae-Seong;Seo, In-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.694-707
    • /
    • 2016
  • This study investigated the community structure of macrobenthic assemblages in the Taehwa River Estuary, Ulsan, Korea. Macrobenthos were collected with a Van Veen Grab Sampler during February and November 2012. The total species number and mean density were $176species/9.6m^2$ and $1,992inds./m^2$, respectively. Polychaetes were the most dominant faunal group in terms of species (91 species) and abundance ($1,463inds./m^2$). The major dominant species were polychaetes Minuspio japonica ($609{\pm}1,221inds./m^2$), Hediste japonica ($174{\pm}318inds./m^2$), Tharyx sp.1 ($106{\pm}283inds/m^2$), Lumbrineris longifolia ($79{\pm}207inds./m^2$), bivalve Theora fragilis ($114{\pm}272inds./m^2$) and amphipod Grandidierella japonica ($88{\pm}223inds./m^2$). Based on community statistics (cluster analysis and non-metric multidimensional scaling (nMDS) ordination), the macrobenthic community was divided into three station groups. Group I(freshwater dominated stations 2-6 with coarse sediment) was characterized by a high abundance of polychaetes Minuspio japonica, Hediste japonica, Capitella capitata, Pseudopolydora kempi, amphipods Grandidierella japonica and Apocorophium acutum. Group II (ecotone, stations 7-9 with mixed sediment) was numerically dominated by bivalve Theora fragilis, polychaetes Cirriformia tentaculata, Tharyx sp.1, Lumbrineris longifolia and Chaetozone sp. Finally, Group III (seawater dominated stations 10-12 with fine sediment) was characterized by a high density of polychaete Magelona japonica. These results showed that changes in salinity gradient and sedimentary characteristics were the main factors behind spatial changes in the macrobenthic communities of the Taehwa River Estuary.

Community Structure of Macrobenthos in the Subtidal Soft Bottom in Semi- enclosed Youngsan River Estuarine Bay, Southwest Coast of Korea (반폐쇄적인 영산강 하구역 조하대 연성저질의 저서동물 군집)

  • LIM Hyun-Sig;PARK Kyung-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.3
    • /
    • pp.320-332
    • /
    • 1999
  • Investigations were made on the community structure of macrobenthos in the subtidal soft bottom around semi-enclosed Youngsan River estuarine bay, southwest coast of Korea during the period from April 1995 to February 1996. Three macrobenthos samples were collected at 40 stations using a van Veen grab(0.1 m^2) during the study period. A total of 206 species of macrobenthos was identified. Their mean density and biomass (wet-weight, wwt) were $1,137 ind./m^2$ and $65.28 gwwt/m^2$, respectively. Of these, there were 74 species of polychaetes ($36\%$), 60 molluscs ($39\%$), 51 crustaceans ($25\%$) and 21 miscellaneous taxa. Molluscs were represented as a density- and biomass-dominant faunal group with a mean density of $601 ind./m^2$($53\%$ of the total benthic animals) and biomass of $25.37 gwwt/m^2$($39\%$ of total biomass): It was followed by polychaetes with $405 ind./m^2$($40\%$ of the total density). Total number of species and diversity were Bow in the inner estuarine bay containing high mud content and organic matter, whereas they were high in the outer stations containing low mud content and organic matter. Major dominant species were one biralve, Theora fragilis and three Polychaetes, Tharyx sp., Poeciloceatus johnonni and Lumbrineris lontifolia whose mean densities were $490ind./m^2$, $96ind./m^2$, $74ind./m^2$and $52 ind./m^2$, respectively. Cluster analysis indicated that the study area could be divided into four station groups: two innermost station groups, a central bay and an outer station group. The species diversity increased from the inner station group toward the outer groups. These results were discussed in terms of both the environmental factors and distribution of benthic community.

  • PDF

Distribution Characteristic of Exploitable Macrobenthic Invertebrates of Beach Sediments in the Southern Coastal Water of Jeju Island (제주남부해역 사질대 유용생물 분포특성)

  • Ko, Jun-Cheol;Ko, Hyuck-Joon;Kim, Bo-Yeon;Cha, Hyung-Kee;Chang, Dae-Su
    • The Korean Journal of Malacology
    • /
    • v.28 no.3
    • /
    • pp.197-213
    • /
    • 2012
  • This study was performed to know the community structure of macrobenthos and environmental factors at each 16 stations in the subtidal sandy bottoms of the southern coastal water of Jeju Island from July to November, 2011. Mean temperature and mean salinity were $20.2-22.7^{\circ}C$, 33.7-34.9 psu which shows stable water messes. Chlorophyll a concentrations of phytoplankton ranged from 0.71 to 1.71 mg/L (1.11 mg/L), showing higher July than September and November with a blooming in summer. The mean concentration values (the ranges in parentheses) of nitrate, phosphate, and silicate are 0.029-0.206 mg/L (0.101 mg/L), 0.001-0.027 mg/L (0.007 mg/L), 0.024-0.682 mg/L (0.454 mg/L), respectively. However, the values higher coastal zone due to influxes from the land. A total of 37 species was identified. of these mollusca comprised 29 secies (78.4%); Echinodermata 5 (13.5%); Arthropoda 3 (8.1%). density and biomass were estimated to be 550 ind./$m^2$ and 20,951.8 gwwt/$m^2$, respectively. Mollusca were the most dominant faunal group in terms of abundance (481 ind./$m^2$) and number of species as well, whereas bivalves were predominant in biomass (16,647.6 gwwt/$m^2$). The dominant species were Vasticardium burchardi, Oblimopa japonica, Mactar achatina, Bornatemishistrioiw akawai, Paphia vernicosa, Amusium japonicum, Glycymeris albolineata, Astriclypeus manni in 15-30 m. The seasonal variation appeared as distinct, Mollusca of individual and biomass. When summer was make a slow increase, after the highest decrease in autumn. The abundance of macrobenthic invertebrates showed significant correlation with environmental factors (Chlorophyll a, DIN, $SiO_2$, Fine sand, Very fine sand) in almost all sampling depths. The biodiversity, evenness richness index were appeared 1.56-2.50 (H'), 0.49-0.80 (E'), 4.12-4.67 (R) in each stations. The dominace index were appeared Highest in November and lowest in September.

Assessment of the Impacts of 'Sea Prince' Oil Spill on the Rocky Intertidal Macrobenthos Community (암반조간대 대형저서동물군집에 대한 씨프린스호 유류 유출사고 영향 평가)

  • Shin, Hyun-Chool;Lee, Jung-Ho;Lim, Kyeong-Hun;Yoon, Seong-Myeoung;Koh, Chul-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.159-169
    • /
    • 2008
  • This study was aimed to classify the intertidal macrozoobenthic community status after 2 years of Sea Prince oil spill, and oil spill effects along oil spreading track from heavily impacted to unaffected reference site. Field sampling was initiated in late February and continued through November 1998 seasonally, after 2.5 years of oil spill. 7 rocky sampling sites were selected among coastal regions coated and/or affected by the Sea Prince spilled oil. Identified species was 158 species, 65 family, 24 order, 9 class, 5 phylum. Mollusca was the dominant faunal group comprising 100 species (63.3%), and followed by 38 species of Crustacea (24.1%), 12 species of Echinodermata (7.6%), 5 species of Porifera (3.2%), and 3 species of Cnidaria (1.9%). On Dugpo of Sori Island, the fewest species was collected from 28 species to 35 species seasonally among sampling stations. But far away Dugpo toward Gamak Bay, the number of species increased, collecting the maximum on Sohwoenggan Island. At the wreck site of Sori Island, especially the species number of attached animals such as poriferans and anthozoans was very low compared to another site. The density and biomass on the higher tidal zone increased toward the low affected sites, but biomass on middle tidal zone decreased. The invertebrate biomass of study area was dependent on the sessile animals. The major dominant species were small-sized barnacles, Chthmallus challengeri, periwinkles, Littorina brevicula, mussels, Septifer virgatus, and so on. The biomass of C. challengeri and L. brevicula on the higher tidal zone was highest in the wreck site of Sori Island and decreased further and further. However, mussels on the middle tidal zone showed the inverse trends because of the larger individual size of mussel inhabited in Sori Island than those of another sites. As a result of community analysis, the effect of oil spill was not found distinctly. Several ecological indices and cluster analysis did not show the meaningful variation with oil track despite of the conspicuous differences among tidal heights. These indicate that the macrozoobenthic community level of oil spreaded zone recovered in some degree after the Sea Prince oil spill accident, but population or individual levels of dominant sessile animals took more recovery times.

Temporal Changes of Community Structure in two Subtidal Polychaete Assemblages in Kwang-yang Bay, Korea (광양만 조하대의 두 다모류 군집 구조의 시간에 따른 변화)

  • 정래홍;홍재상
    • 한국해양학회지
    • /
    • v.30 no.5
    • /
    • pp.390-402
    • /
    • 1995
  • Bimonthly sampling was carried out over the period February 1983 to April 1985 at two stations in Kwang-yang Bay, Korea, in order to study the temporal changes of benthic ploychaete communities. In addition, an important focus of the study was the large-scale reclamation and dredging operations that were taking place for industrial purposes during the study period. The muddy station, located on the main channel, showed high mud content (94%), whereas the sandy station, situated on the north channel of Myodo, demonstrated mud content of 42%. At the muddy station, the number of species and individuals were highest in the early sampling stage, but markedly declined in October 1983, and then gradually increased as in the early state. At the sandy station, the number of species highly oscillated during the entire period. The density was affected by the pectinated Lagis bocki showing particulary high density in February 1983 and 1984. However, the high density in the winter time did not occur in February 1985. The analysis of similarities and clusterings between communities were carried out to evaluate temporal changes in community structure. Significant changes occurred during the study period in the community structures at both stations, but each maintained different patterns of species dominance over time. At the muddy station, this transitionary phase was found in October 1983 but in December 1984 at the sandy station. Comparisons with earlier communities suggest that faunal changes in the dominant species composition occurred from Lumbrineris longifolia to Heteromastus filiformis over this time period. The colonization of this opportunistic pioneer, H, filiformis, seems to manifest environmental disturbances in this bay area.

  • PDF

Classification System of Wetland Ecosystem and Its Application (습지생태계 분류체계의 검토 및 적용방안 연구)

  • Chun, Seung Hoon;Lee, Byung Hee;Lee, Sang Don;Lee, Yong Tae
    • Journal of Wetlands Research
    • /
    • v.6 no.3
    • /
    • pp.55-70
    • /
    • 2004
  • The wetland ecosystem is a complex products of various erosion force, accumulation as water flows, hydrogeomorphic units, seasonal changes, the amount of rainfalls, and other essential element. There is no single, correct, ecologically sound definition for wetlands because of the diversity of wetlands and the demarcation between dry and wet environments occurs along a continuum, but wetland plays various ecosystem functions. Despite comprehensive integration through classification and impact factors there is still lacking in systematic management of wetlands. Classification system developed by the USFWS(1979) is hierarchical progresses from systems and subsystems at general levels to classes, subclasses, dominance types, and habitat modifiers. Systems and subsystems are delineated according to major physical attributes such as tidal flushing, ocean-derived salts, and the energy of flowing water or waves. Classes and subclasses describe the type of substrate and habitat or the physiognomy of the vegetation or faunal assemblage. Wetland classes are divided into physical types and biotic types. For the wise management of wetlands in Korea, this study was carried out to examine methodology of USFWS classification system and discuss its application for Korean wetland hydrogeomorphic units already known. Seven wetland types were chosen as study sites in Korea divided into some different types based on USFWS system. Three wetland types belonging to palustrine system showed no difference between Wangdungjae wetland and Mujechi wetland, but Youngnup of Mt. Daeam was different from the former two types at the level of dominant types. This fact means that setting of classification system for management of wetland is needed. Although we may never know much about the wetland resources that have been lost, there are opportunities to conserve the riches that remain. Extensive inventory of all wetland types and documentation of their ecosystem functions are vital. Unique and vulnerable examples in particular need to be identified and protected. Furthermore, a framework with which to demonstrate wetland characteristics and relationships is needed that is sufficiently detailed to achieve the identification of the integrity and salient features of an enormous range of wetland types.

  • PDF

Macrozoobenthic Community Structures in the Shallow Subtidal Soft-bottoms around Wando-Doam Bay during Summer Season (남해 완도-도암만 연성기질의 여름철 대형저서동물의 군집구조)

  • LIM, HYUN-SIG;CHOI, JIN-WOO;SON, MIN-HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.2
    • /
    • pp.91-108
    • /
    • 2018
  • An ecological study on subtidal macrobenthic fauna was conducted from 25 stations in the estuarine area of Wando-Doam Bay, southern coast of Korea during August 2013. A total of 186 species was collected with a mean density of $1,229ind./m^2$ and a mean biomass of $265.7g/m^2$. Polychaetes showed the richest benthic fauna comprising 43% of total fauna, whereas mollusks appeared as density- and biomass-dominant fauna accounted for 45% and 48% of the mean density and biomass, respectively. The number of species and mean faunal density were relatively higher at the stations surrounded by Sinjido, Joyakdo and Gogeumdo showing a gradual decrease toward inner bay stations. Species number and density were negatively correlated with bottom water temperature, but they were positively correlated with both the bottom salinity and DO. The most dominant species in terms of density was a semelid bivalve, Theora fragilis which showed a positive correlation with TOC content of surface sediment and its high density occurred around Gogeum-Sinji-Joyakdo area where dense aquaculture facilities exist. In the bay mouth area, an amphipod species, Eriopisella sechellensis showed its higher density at the stations with low organic content but fine grains. The combination of water temperature, salinity, pH of bottom water, water and sulfur content of the surface sediment could explain 71% of the spatial distribution of macrobenthic fauna from the Bio-Env analysis. From the cluster analysis, the study area consisted of 6 distinct station groups lineated from offshore area toward inner area. Ampharete arctica, Goniada maculata, Eriopisella sechellensis, Theora fragilis, Caprella sp. were identified as the main contributing faunas in classification by the SIMPER analysis. From the value of BPI, the benthic communities at the inner and central Wando-Doam Bay were assessed to be in a normal condition whereas those at the outer Wando harbor and Gogeum-Sinji-Joyakdo area were assessed in a poor or very poor condition due to the high concentration of particulate organic matter might be originated from the nearby dense aquaculture facilities. This study indicated that pristine inner bay has been influenced by the organic material supplied from the outer bay. Thus it is necessary to establish an ecological management plan to reduce organic enrichment of sediment from dense aquaculture facilities in the outer bay.