• Title/Summary/Keyword: fault detection & diagnosis

Search Result 461, Processing Time 0.027 seconds

A Study on a Fault Detection and Isolation Method of Nonlinear Systems using SVM and Neural Network (SVM과 신경회로망을 이용한 비선형시스템의 고장감지와 분류방법 연구)

  • Lee, In-Soo;Cho, Jung-Hwan;Seo, Hae-Moon;Nam, Yoon-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.540-545
    • /
    • 2012
  • In this paper, we propose a fault diagnosis method using artificial neural network and SVM (Support Vector Machine) to detect and isolate faults in the nonlinear systems. The proposed algorithm consists of two main parts: fault detection through threshold testing using a artificial neural network and fault isolation by SVM fault classifier. In the proposed method a fault is detected when the errors between the actual system output and the artificial neural network nominal system output cross a predetermined threshold. Once a fault in the nonlinear system is detected the SVM fault classifier isolates the fault. The computer simulation results demonstrate the effectiveness of the proposed SVM and artificial neural network based fault diagnosis method.

Research Status on Machine Learning for Self-Healing of Mobile Communication Network (이동통신망 자가 치유를 위한 기계학습 연구동향)

  • Kwon, D.S.;Na, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.30-42
    • /
    • 2020
  • Unlike in previous generations of mobile technology, machine learning (ML)-based self-healing research trend are currently attracting attention to provide high-quality, effective, and low-cost 5G services that need to operate in the HetNets scenario where various wireless transmission technologies are added. Self-healing plays a vital role in detecting and mitigating the faults, and confirming that there is still room for improvement. We analyzed the research trend in self-healing framework and ML-based fault detection, fault diagnosis, and fault compensation. We propose that to ensure that self-healing is a proactive instead of being reactive, we have to design an ML-based self-healing framework and select a suitable ML algorithm for fault detection, diagnosis, and outage compensation.

Fault Detection and Diagnosis of an Agitator Using the Wavelet Transform (웨이브렛 변환을 이용한 교반기의 고장감지 및 진단)

  • 서동욱;전도영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.851-855
    • /
    • 2002
  • This paper proposes a method of fault detection and diagnosis of agitators based on the wavelet analysis of the current and vibration signals. The wavelet transform has received considerable interest in the fields of acoustics, communication, image compression, vision. and seismic since it provides the fast and effective means of analyzing signals recorded during operation. Neural network is used to diagnose the fault. Specifically, the proposed approach consists of (i) fault detection, (ii) feature extraction, and (iii) classification of fault types. The results show an effective application of the wavelet analysis on the monitoring of an agitator.

Hybrid fault detection and isolation for uncertainty system (불확실성을 고려한 시스템에서의 복합형 이상검출 및 격리)

  • 유호준;김대우;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1432-1435
    • /
    • 1997
  • This paper proposes a fault detection and isolation metho by combining the parameter estimation method[4] with the observer method[2] to use merits of both methods. To verify the performance of the method proposed some simulations applied to remotely piloted vehicle are performed.

  • PDF

Multiple faults diagnosis of a linear system using ART2 neural networks (ART2 신경회로망을 이용한 선형 시스템의 다중고장진단)

  • Lee, In-Soo;Shin, Pil-Jae;Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.244-251
    • /
    • 1997
  • In this paper, we propose a fault diagnosis algorithm to detect and isolate multiple faults in a system. The proposed fault diagnosis algorithm is based on a multiple fault classifier which consists of two ART2 NN(adaptive resonance theory2 neural network) modules and the algorithm is composed of three main parts - parameter estimation, fault detection and isolation. When a change in the system occurs, estimated parameters go through a transition zone in which residuals between the system output and the estimated output cross the threshold, and in this zone, estimated parameters are transferred to the multiple faults classifier for fault isolation. From the computer simulation results, it is verified that when the proposed diagnosis algorithm is performed successfully, it detects and isolates faults in the position control system of a DC motor.

  • PDF

Studies on the Performance Variation of a Variable Speed Vapor Compression System under Fault and Its Detection and Diagnosis (가변속 증기압축 냉동시스템에서 고장시의 성능변화와 고장 감지 및 진단에 관한 연구)

  • Kim Minsung;Kim Min Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • An experimental study has been peformed to develop a scheme for fault detection and diagnosis(FDD) in a vapor compression refrigeration system. This study is to analyze fault effect on the system performance and to find efficient diagnosis rules for easy determination of abnormal system operation. The refrigeration system was operated with a variable speed compressor to modulate cooling capacity. The FDD system was designed to consider transient load conditions. Four major faults were considered, and each fault was detected over wide operating load range by separating the system response to the load change. Rule-based method was used to diagnose and classify the system faults. From the experimental results, COP degradation due to the faults in a variable speed system is severer than that in a constant speed system. The method developed in this study can be used in the fault detection of refrigeration systems with a variable speed compressor.

An Experimental Study on Fault Detection and Diagnosis Method for a Water Chiller Using Bayes Classifier (베이즈 분류기를 이용한 수냉식 냉동기의 고장 진단 방법에 관한 실험적 연구)

  • Lee, Heung-Ju;Chang, Young-Soo;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.508-516
    • /
    • 2008
  • Fault detection and diagnosis(FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. An experimental study has been performed on fault detection and diagnosis method for a water chiller. Bayes classifier, which is one of classical pattern classifiers, is adopted in deciding whether fault occurred or not. Failure modes in this study include refrigerant leakage, decrease in mass flow rate of the chilled water and cooling water, and sensor error of the cooling water inlet temperature. It is possible to detect and diagnose faults in this study by adopting FDD algorithm using only four parameters(compressor outlet temperature, chilled water inlet temperature, cooling water outlet temperature and compressor power consumption). Refrigerant leakage failure is detected at 20% of refrigerant leakage. When mass flow rate of the chilled and cooling water decrease more than 8% or 12%, FDD algorithm can detect the faults. The deviation of temperature sensor over $0.6^{\circ}C$ can be detected as fault.

Fault Tolerant Control Design Using IMM Filter with an Application to a Flight Control System (IMM 필터를 이용한 고장허용 제어기법 및 비행 제어시스템에의 응용)

  • 김주호;황태현;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.87-87
    • /
    • 2000
  • In this paper, an integrated design of fault detection, diagnosis and reconfigurable control tot multi-input and multi-output system is proposed. It is based on the interacting multiple model estimation algorithm, which is one of the most cost-effective adaptive estimation techniques for systems involving structural and/or parametric changes. This research focuses on the method to recover the performance of a system with failed actuators by switching plant models and controllers appropriately. The proposed scheme is applied to a fault tolerant control design for flight control system.

  • PDF

Sensor Fault Detection and Analysis of Fault Status using Smart Sensor Modeling

  • Kim, Sung-Shin;Baek, Gyeong-Dong;Lee, Soo-Jin;Jeon, Tae-Ryong
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.207-212
    • /
    • 2008
  • There are several sensors in the liquid cargo ship. In the liquid cargo ship, we can get values from various sensors that are level sensor, temperature sensor, pressure sensor, oxygen sensor, VOCs sensor, high overfill sensor, etc. It is important to guarantee the reliability of sensors. In order to guarantee the reliability of sensors, we have to study the diagnosis of sensor fault. The technology of smart sensor is widely used. In this paper, the technology of smart sensor is applied to diagnosis of level sensor fault for liquid cargo ship. In order to diagnose sensor fault and find the sensor position, in this paper, we proposed algorithms of diagnosis of sensor fault using independent sensor diagnosis unit and self fault diagnosis using sensor modeling. Proposed methods are demonstrated by experiment and simulation. The results show that the proposed approach is useful. Proposed methods are useful to develop smart level sensor.

Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System (지적보전시스템의 실시간 다중고장진단 기법 개발)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).