Park, Je-Wook;Baek, Seong-Won;Kim, Jang-Mok;Lee, Dong-Choon;Lee, Kyo-Beum
The Transactions of the Korean Institute of Power Electronics
/
v.16
no.5
/
pp.457-465
/
2011
The fault analysis and detecting algorithm for a 3 phase diode rectifier is proposed. The 3 phase dioderectifier is used for the AC power rectifier of the PWM inverter. The input power or diode faults cause theripples of the DC voltage, degradation of the control performance and life shortening of the DC link capacitor.In this paper, the ripple of the DC voltage is mathematically analyzed for the earth fault of input power andopen circuit fault of the diode, respectively. The fault detection and type of fault can be obtained by comparingthe average DC voltage and the instant DC voltage which is sampled with 6 times of grid frequency. Theproposed method can be easily applicable and doesn't require additional circuit. The experimental and simulationresults are presented to verify the validity of the proposed method.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.2
/
pp.185-195
/
2018
As machines have been automated in the field of industries in recent years, it is a paramount importance to manage and maintain the automation machines. When a fault occurs in sensors attached to the machine, the machine may malfunction and further, a huge damage will be caused in the process line. To prevent the situation, the fault of sensors should be monitored, diagnosed and classified in a proper way. In the paper, we propose a sensor fault detection scheme based on SVM and CNN to detect and classify typical sensor errors such as erratic, drift, hard-over, spike, and stuck faults. Time-domain statistical features are utilized for the learning and testing in the proposed scheme, and the genetic algorithm is utilized to select the subset of optimal features. To classify multiple sensor faults, a multi-layer SVM is utilized, and ensemble technique is used for CNN. As a result, the SVM that utilizes a subset of features selected by the genetic algorithm provides better performance than the SVM that utilizes all the features. However, the performance of CNN is superior to that of the SVM.
Most of the machine learning-based intrusion detection tools developed for Industrial Control Systems (ICS) are trained on network packet captures, and they rely on monitoring network layer traffic alone for intrusion detection. This approach produces weak intrusion detection systems, as ICS cyber-attacks have a real and significant impact on the process variables. A limited number of researchers consider integrating process measurements. However, in complex systems, process variable changes could result from different combinations of abnormal occurrences. This paper examines recent advances in intrusion detection algorithms, their limitations, challenges and the status of their application in critical infrastructures. We also introduce the discussion on the similarities and conflicts observed in the development of machine learning tools and techniques for fault diagnosis and cybersecurity in the protection of complex systems and the need to establish a clear difference between them. As a case study, we discuss special characteristics in nuclear power control systems and the factors that constraint the direct integration of security algorithms. Moreover, we discuss data reliability issues and present references and direct URL to recent open-source data repositories to aid researchers in developing data-driven ICS intrusion detection systems.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.16
no.5
/
pp.29-37
/
2002
This paper presents the diagnostic method for fault prevention in metal clad switchgear(MCS) through comparison of signals before and after detecting the partial discharge using electromagnetic detection technique. Electromagnetic waves detected by antennas of the inside and outside of MCS are analyzed and compared by frequency spectrum analysis method which can estimate an insulation abnormality and normality of MCS. As a result of the experiment by the proposed method, we can detect the insulation abnormality as partial discharge in MCS and these results can be applied to preventive diagnosis of MCS.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.13
no.4
/
pp.215-220
/
2013
Recently, death number of heart attack in the world is increasing rapidly. Therefore, to solve these problem, it is trend that is making mandatory automatic defibrillator AED establishment to airport, school, at home. However, AED use in an emergency or equipment failure caused malfunctions if equipped with AED may even become obsolete. In this paper, in order to improve this problem, AED Simulator using the fuzzy simulation technique in comparison to existing methods Tilt ambient temperature conditions and in consideration of the conditions, self-diagnostics, error detection at the time to determine whether the development of intelligent simulation. Moreover, in this paper, it proved that fuzzy AED Simulation improved fault detection probability results 30% more than conventional method.
Nuclear power plants contain several monitoring systems that can identify the in-vessel phenomena of a severe accident (SA). Though a lot of analysis and research is carried out on SA, right from the development of the nuclear industry, not all the possible circumstances are taken into consideration. Therefore, to improve the efficacy of the safety of nuclear power plants, additional analytical studies are needed that can directly monitor severe accident phenomena. This paper presents an interacting multiple model (IMM) based fault detection and diagnosis (FDD) approach for the identification of in-vessel phenomena to provide the accident propagation information using reactor vessel (RV) out-wall temperature distribution during severe accidents in a nuclear power plant. The estimation of wall temperature is treated as a state estimation problem where the time-varying wall temperature is estimated using IMM employing three multiple models for temperature evolution. From the estimated RV out-wall temperature and rate of temperature, the in-vessel phenomena are identified such as core meltdown, corium relocation, reactor vessel damage, reflooding, etc. We tested the proposed method with five different types of SA scenarios and the results show that the proposed method has estimated the outer wall temperature with good accuracy.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
1999.05a
/
pp.437-441
/
1999
In this paper, a fault diagnosis method using unknown-input proportional integral (PI) observers including the magnitude of actuator failures is proposed. It is shown that actuator failures are detected and isolated perfectly by monitoring the integrated error between the actual output and the estimated output using an unknown-input PI observer. Also in presence of complex actuator and sensor failures, these failures are detected and isolated by multiple unknown-input PI observers perfectly.
In general, power demand is on an increasing trend as industries have made rapid strides. Power transformer is the most important equipment in substation for this reason. Transformer trobles go with blackout, expensive repair costs and huge economic losses. Therefore it is important to find the quick detection of incipient fault for the least losses. There have been gas, partial discharge, temperature, OLTC, fan and pump diagnosis for preventive techniques by present. Specially gas analysis has been adapted for a long time and proved as confident method. In this paper, we analysed the fault causes of used power transformer. The insulation faults was occupied 40% of inquired 152 faults from 1991 to 2000. This study presents the developed algorithm and expert system for finding abnormal status within transformer. We used the Element Expert tool developed Neuron DATA Inc.
This paper presents a new FDI scheme based on dynamic fuzzy model(DFM) for the nonlinear system. The dynamic behavior of a nonlinear system is represented by a set of local linear models. The parameters of the DFM are identified in on-line and aggregated to generate a residual vector by the approximate reasoning. The neural network classifer learns the relationship between the residual vector and fault type and used both for the detection and isolation of process faults We apply the proposed FDI scheme to the FDI system design for a two-tank system and show the usefulness of the proposed scheme.
Proceedings of the Korean Society of Machine Tool Engineers Conference
/
2000.04a
/
pp.20-27
/
2000
A chatter vibration and a workpiece burn are the main phenomena to be monitored in modern grinding processes. This study describes a trouble diagnosis of the cylindrical plunge grinding process using the power and acoustic emission (AE) signals. The raw signals of the power and the AE occurred during the grinding operation were sampled and analyzed to determine the relationship between each fault and change of signals. A neural network that has a high success rate of the fault detection was used. Furthermore, an analysis on the influence of parameters to the chatter vibration and the grinding burn was conducted.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.