• Title/Summary/Keyword: fault detection & diagnosis

Search Result 461, Processing Time 0.027 seconds

Rotor Fault Detection of Induction Motors Using Stator Current Signals and Wavelet Analysis

  • Hyeon Bae;Kim, Youn-Tae;Lee, Sang-Hyuk;Kim, Sungshin;Wang, Bo-Hyeun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.539-542
    • /
    • 2003
  • A motor is the workhorse of our industry. The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. Different internal motor faults (e.g., inter-turn short circuits, broken bearings, broken rotor bars) along with external motor faults (e.g., phase failure, mechanical overload, blocked rotor) are expected to happen sooner or later. This paper introduces the fault detection technique of induction motors based upon the stator current. The fault motors have rotor bar broken or rotor unbalance defect, respectively. The stator currents are measured by the current meters and stored by the time domain. The time domain is not suitable to represent the current signals, so the frequency domain is applied to display the signals. The Fourier Transformer is used for the conversion of the signal. After the conversion of the signals, the features of the signals have to be extracted by the signal processing methods like a wavelet analysis, a spectrum analysis, etc. The discovered features are entered to the pattern classification model such as a neural network model, a polynomial neural network, a fuzzy inference model, etc. This paper describes the fault detection results that use wavelet decomposition. The wavelet analysis is very useful method for the time and frequency domain each. Also it is powerful method to detect the features in the signals.

  • PDF

Clustering-based Monitoring and Fault detection in Hot Strip Roughing Mill (군집기반 열간조압연설비 상태모니터링과 진단)

  • SEO, MYUNG-KYO;YUN, WON YOUNG
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.1
    • /
    • pp.25-38
    • /
    • 2017
  • Purpose: Hot strip rolling mill consists of a lot of mechanical and electrical units. In condition monitoring and diagnosis phase, various units could be failed with unknown reasons. In this study, we propose an effective method to detect early the units with abnormal status to minimize system downtime. Methods: The early warning problem with various units is defined. K-means and PAM algorithm with Euclidean and Manhattan distances were performed to detect the abnormal status. In addition, an performance of the proposed algorithm is investigated by field data analysis. Results: PAM with Manhattan distance(PAM_ManD) showed better results than K-means algorithm with Euclidean distance(K-means_ED). In addition, we could know from multivariate field data analysis that the system reliability of hot strip rolling mill can be increased by detecting early abnormal status. Conclusion: In this paper, clustering-based monitoring and fault detection algorithm using Manhattan distance is proposed. Experiments are performed to study the benefit of the PAM with Manhattan distance against the K-means with Euclidean distance.

Application of the AE Technique for The Detection of Shaft Crack with Low Speed (저속회전축의 균열 검출을 위한 음향방출기법의 적용)

  • Gu, Dong-Sik;Kim, Jae-Gu;Choi, Byeong-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.185-190
    • /
    • 2010
  • Condition monitoring(CM) is a method based on non-destructive test(NDT). So, recently many kind of NDT were applied for CM. Acoustic emission(AE) is widely used for the early detection of faults in rotating machinery in these days because of high sensitivity than common accelerometers and detectable low energy vibration signals. And crack is considered one of severe fault in the rotating machine. Therefore, in this paper, study on early detection using AE has been accomplished for the crack of the low-speed shaft. There is a seeded initial crack on the shaft then the AE signal had been measured with low-speed rotation as the applied load condition. The signal detected from crack in rotating machine was detected by the AE transducer then the trend of crack growth had found out by using some of feature values such as peak value, skewness, kurtosis, crest factor, frequency center value(FC), variance frequency value(VF) and so on.

Fault Detection of a Proposed Three-Level Inverter Based on a Weighted Kernel Principal Component Analysis

  • Lin, Mao;Li, Ying-Hui;Qu, Liang;Wu, Chen;Yuan, Guo-Qiang
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.182-189
    • /
    • 2016
  • Fault detection is the research focus and priority in this study to ensure the high reliability of a proposed three-level inverter. Kernel principal component analysis (KPCA) has been widely used for feature extraction because of its simplicity. However, highlighting useful information that may be hidden under retained KPCs remains a problem. A weighted KPCA is proposed to overcome this shortcoming. Variable contribution plots are constructed to evaluate the importance of each KPC on the basis of sensitivity analysis theory. Then, different weighting values of KPCs are set to highlight the useful information. The weighted statistics are evaluated comprehensively by using the improved feature eigenvectors. The effectiveness of the proposed method is validated. The diagnosis results of the inverter indicate that the proposed method is superior to conventional KPCA.

Detection of Incipient Faults in Induction Motors using FIS, ANN and ANFIS Techniques

  • Ballal, Makarand S.;Suryawanshi, Hiralal M.;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.181-191
    • /
    • 2008
  • The task performed by induction motors grows increasingly complex in modern industry and hence improvements are sought in the field of fault diagnosis. It is essential to diagnose faults at their very inception, as unscheduled machine down time can upset critical dead lines and cause heavy financial losses. Artificial intelligence (AI) techniques have proved their ability in detection of incipient faults in electrical machines. This paper presents an application of AI techniques for the detection of inter-turn insulation and bearing wear faults in single-phase induction motors. The single-phase induction motor is considered a proto type model to create inter-turn insulation and bearing wear faults. The experimental data for motor intake current, rotor speed, stator winding temperature, bearing temperature and noise of the motor under running condition was generated in the laboratory. The different types of fault detectors were developed based upon three different AI techniques. The input parameters for these detectors were varied from two to five sequentially. The comparisons were made and the best fault detector was determined.

Detection of MIsfired Engine Cylinder by Using Directional Power Spectra of Vibration Signals (진동 신호의 방향 파워 스펙트럼을 이용한 엔진의 실화 실린더 탐지)

  • 한윤식;한우섭;이종원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.49-59
    • /
    • 1993
  • A new signal processing technique is applied to four-cylinder spark and compression ignition engines for the diagnosis of power faults inside the cylinders. This technique utilizes two-sided directional power spectra(예S) of complex vibration signals measured from engine blocks as the patterns for engine cylinder power faults. The dPSs feature that they give not only the frequency contents but also the directivity of the engine block motion. For the automatic detection/diagnosis of cylinder power faults, pattern recognition method using multi-layer neural networks is employed. Experimental results show that the sucess rate for diagnosis of cylinder power faults using dPSs is higher than that using the conventional one-sided power spectra. The proposed technique is also tested to check the robustness to the sensor position and the engine rotational speed.

  • PDF

A Survey on Fault Detection and Diagnosis Method for Open-Cycle Liquid Rocket Engines through China R&D Case (중국의 연구 사례를 통한 개방형 액체로켓엔진의 고장진단 동향 분석)

  • Lee, Kyelim;Cha, Jihyoung;Ko, Sangho
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.3
    • /
    • pp.22-30
    • /
    • 2017
  • This paper examines a survey on recent research regarding health monitoring and management for liquid rocket engines (LRE). For this, we investigated precedent techniques applied to LRE development. Particularly, we focused on open-cycle LRE to apply to KSLV-II (Korea Space Launch Vehicle II). Through this study, we subdivided health monitoring algorithms and analyzed fault detection and diagnosis algorithm developed in China, since China researched open-cycle LRE that have the same cycle as KSLV-II rocket engines. We discuss significant points to be considered regarding development of the KSLV-II.

On Diagnosis Measurement under Dynamic Loading of Ball Bearing using Numerical Thermal Analysis and Infrared Thermography (전산 열해석 및 적외선 열화상을 이용한 볼베어링의 동적 하중에 따른 진단 계측에 관한 연구)

  • Hong, Dong-Pyo;Kim, Ho-Jong;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.355-360
    • /
    • 2013
  • With the modern machinery towards the direction of high-speed development, the thermal issues of mechanical transmission system and its components is increasingly important. Ball bearing is one of the main parts in rotating machinery system, and is a more easily damaged part. In this paper, bearing thermal fault detection is investigated in details Using infrared thermal imaging technology to the operation state of the ball bearing, a preliminary thermal analysis, and the use of numerical simulation technology by finite element method(FEM) under thermal conditions of the bearing temperature field analysis, initially identified through these two technical analysis, bearing a temperature distribution in the normal state and failure state. It also shows the reliability of the infrared thermal imaging technology. with valuable suggestions for the future bearing fault detection.