• Title/Summary/Keyword: fault detection & diagnosis

Search Result 461, Processing Time 0.033 seconds

Fault Diagnosis of the Nonlinear Systems Using Neural Network-Based Multi-Fault Models (신경회로망기반 다중고장모델에 의한 비선형시스템의 고장진단)

  • 이인수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.115-118
    • /
    • 2001
  • In this paper we propose an FDI(fault detection and isolation) algorithm using neural network-based multi-fault models to detect and isolate single faults in nonlinear systems. When a change in the system occurs, the errors between the system output and the neural network nominal system output cross a threshold, and once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output.

  • PDF

Incipient Fault Detection of Reactive Ion Etching Process

  • Hong, Sang-Jeen;Park, Jae-Hyun;Han, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.262-271
    • /
    • 2005
  • In order to achieve timely and accurate fault detection of plasma etching process, neural network based time series modeling has been applied to reactive ion etching (RIE) using two different in-situ plasma-monitoring sensors called optical emission spectroscopy (OES) and residual gas analyzer (RGA). Four different subsystems of RIE (such as RF power, chamber pressure, and two gas flows) were considered as potential sources of fault, and multiple degrees of faults were tested. OES and RGA data were simultaneously collected while the etching of benzocyclobutene (BCB) in a $SF_6/O_2$ plasma was taking place. To simulate established TSNNs as incipient fault detectors, each TSNN was trained to learn the parameters at t, t+T, ... , and t+4T. This prediction scheme could effectively compensate run-time-delay (RTD) caused by data preprocessing and computation. Satisfying results are presented in this paper, and it turned out that OES is more sensitive to RF power and RGA is to chamber pressure and gas flows. Therefore, the combination of these two sensors is recommended for better fault detection, and they show a potential to the applications of not only incipient fault detection but also incipient real-time diagnosis.

Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles

  • Sun, Yu-shan;Ran, Xiang-rui;Li, Yue-ming;Zhang, Guo-cheng;Zhang, Ying-hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.243-251
    • /
    • 2016
  • Autonomous Underwater Vehicles (AUVs) generally work in complex marine environments. Any fault in AUVs may cause significant losses. Thus, system reliability and automatic fault diagnosis are important. To address the actuator failure of AUVs, a fault diagnosis method based on the Gaussian particle filter is proposed in this study. Six free-space motion equation mathematical models are established in accordance with the actuator configuration of AUVs. The value of the control (moment) loss parameter is adopted on the basis of these models to represent underwater vehicle malfunction, and an actuator failure model is established. An improved Gaussian particle filtering algorithm is proposed and is used to estimate the AUV failure model and motion state. Bayes algorithm is employed to perform robot fault detection. The sliding window method is adopted for fault magnitude estimation. The feasibility and validity of the proposed method are verified through simulation experiments and experimental data.

Fault Diagnosis Based on MCSA for Gearbox of BLDC Motor (MCSA 기반의 BLDC 모터 기어박스의 고장 진단)

  • Shin, Sa-Chul;Kim, Jun-Young;Yang, Chul-Oh;Park, Kyu-Nam;Song, Myung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2069-2070
    • /
    • 2011
  • In this paper, the fault diagnosis for a gearbox of BLDC motor. The stator of BLDC motor consists of coil winding so it is easy to cool down and it also has a high reliability. In addition, it doesn't have a brush so it is less trouble and good in maintenance. Coupling with the motor which is the power sources, the gear has a high power transfer efficiency and various rotation speed. The gear gets a high driving force through deceleration. Thus it has been widely used. The gearbox fault detection area has not attracted much attention from electrical engineering community. A few papers describe gearbox fault based on vibration. Gearbox fault is diagnosed through FFT analysis of current and voltage. Fault characteristic frequency side band detected by calculating fault frequency. A threshold value is suggested by comparing normal peak value with fault peak value using detected fault characteristic frequency side band. Experimental results demonstrate that motor current and voltage signal analysis are viable tools in detecting these gear faults. Lower side band(LSB) is bigger than upper side band(USB) in current FFT. LSB and USB are similar in voltage FFT. Finally, fault diagnosis system that can easily detect flaws is developted for gearbox of BLDC motor.

  • PDF

Development of fault detection and diagnosis system for the heat source apparatus of building air-conditioning system (공조시스템의 열원기기에 대한 고장검출 및 진단 시스템 개발)

  • Han, Dong-Won;Park, Jong-Soo;Chang, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.30-35
    • /
    • 2008
  • This paper describes a fault detection and diagnosis (FDD) system developed for the heat source apparatus in building air-conditioning system. As HVAC&R systems in building become complex and instrumented with highly automated controllers, the processes and systems get more difficult for the operator to understand and detect the mal-functions. Poorly maintained, degraded, and improperly controlled equipment wastes an estimated 15% to 30% of energy used in commercial building. When operating a complex facility, FDD system is beneficial in equipment management to provide the operator with tools which can help in decision making for recovery from a failure of the system. Automated FDD for HVAC&R system has the potential to reduce energy and maintenance costs and improves comfort and reliability. Over the last decade there has been considerable research for developing FDD system for HVAC&R equipment. However, they are being made too much of a theoretical study, so only a small of FDD methods are deployed in the field. This study deduced an actual defect source for the heat source apparatus and suggested a low price FDD method which is ready to be deployed in the field.

  • PDF

Signal-Based Fault Detection and Diagnosis on Electronic Packaging and Applications of Artificial Intelligence Techniques (시그널 기반 전자패키지 결함검출진단 기술과 인공지능의 응용)

  • Tae Yeob Kang;Taek-Soo Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.30-41
    • /
    • 2023
  • With the aggressive down-scaling of advanced integrated circuits (ICs), electronic packages have become the bottleneck of both reliability and performance of whole electronic systems. In order to resolve the reliability issues, Institute of Electrical and Electronics Engineers (IEEE) laid down a roadmap on fault detection and diagnosis (FDD), thrusting the digital twin: a combination of reliability physics and artificial intelligence (AI). In this paper, we especially review research works regarding the signal-based FDD approaches on the electronic packages. We also discuss the research trend of FDD utilizing AI techniques.

A study on the fault diagnosis system for Induction motor using current signal analysis (전류신호 분석을 통한 유도전동기 고장진단시스템 연구)

  • Byun, Yeun-Sub;Jang, Dong-Uk;Park, Hyun-June;Wang, Jong-Bae;Lee, Byung-Song
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.19-21
    • /
    • 2001
  • Induction motors are a critical component of many industrial machines and are frequently integrated in commercial equipment. The many economical losses and the deterioration of system reliability might be caused by the failure of induction motors in industrial field. Based on the reliability and cost competitiveness of driving system(motors), the faults detection and diagnosis of system is considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis (MCSA) method are emphasized. In this paper, MCSA method is used for induction motor fault diagnosis. This method analyzes the motor's supply current, since this diagnoses the motor's condition. The diagnostic system is constructed by using LabVIEW of National Instruments.

  • PDF

A study on the fault diagnosis system for Induction motor (유도전동기 고장진단시스템 연구)

  • Byun, Yeun-Sub;Park, Hyun-June;Kim, Gil-Dong;Han, Young-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2172-2174
    • /
    • 2001
  • Induction motors are a critical component of many industrial machines and are frequently integrated in commercial equipment. The many economical losses and the deterioration of system reliability might be caused by the failure of induction motors in industrial field. Based on the reliability and cost competitiveness of driving system (motors), the faults detection and diagnosis of system is considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis (MCSA) method are emphasized. In this paper, MCSA method is used for induction motor fault diagnosis. This method analyzes the motor's supply current, since this diagnoses the motor's condition. The diagnostic system is constructed by using LabVIEW of National Instruments.

  • PDF

The Fuzzy Fault Diagnosis System for Induction Motor

  • Sub, Byung-Yeun;Uk, Jang-Dong;Hyundai-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.65.1-65
    • /
    • 2001
  • Induction motors are a critical component of many industrial machines and are frequently integrated in commercial equipment. The many economical losses and the deterioration of system reliability might be caused by the failure of induction motors in industrial field. Based on the reliability and cost competitiveness of driving system motors, the faults detection and diagnosis of system is considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis MCSA method are emphasized. In this paper, MCSA method is used for induction motor fault diagnosis. This method analyzes the motor´s supply current, since this diagnoses the motor´s condition. The diagnostic system is constructed by using LabVIEW of National Instruments.

  • PDF

Development of a Model-Based Motor Fault Detection System Using Vibration Signal (진동 신호 이용 모델 기반 모터 결함 검출 시스템 개발)

  • ;A.G. Parlos
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.874-882
    • /
    • 2003
  • The condition assessment of engineering systems has increased in importance because the manpower needed to operate and supervise various plants has been reduced. Especially, induction motors are at the core of most engineering processes, and there is an indispensable need to monitor their health and performance. So detection and diagnosis of motor faults is a base to improve efficiency of the industrial plant. In this paper, a model-based fault detection system is developed for induction motors, using steady state vibration signals. Early various fault detection systems using vibration signals are a trivial method and those methods are prone to have missed fault or false alarms. The suggested motor fault detection system was developed using a model-based reference value. The stationary signal had been extracted from the non-stationary signal using a data segmentation method. The signal processing method applied in this research is FFT. A reference model with spectra signal is developed and then the residuals of the vibration signal are generated. The ratio of RMS values of vibration residuals is proposed as a fault indicator for detecting faults. The developed fault detection system is tested on 800 hp motor and it is shown to be effective for detecting faults in the air-gap eccentricities and broken rotor bars. The suggested system is shown to be effective for reducing missed faults and false alarms. Moreover, the suggested system has advantages in the automation of fault detection algorithms in a random signal system, and the reference model is not complicated.