• Title/Summary/Keyword: fault detection & diagnosis

Search Result 461, Processing Time 0.036 seconds

Fault Detection and Diagnosis of a Constant Volume Air Handling Unit by a Fuzzy Algorithm (퍼지 알고리즘을 이용한 정풍량 공조기의 고장 감지 및 진단)

  • Han Doyoung;Kim Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.444-451
    • /
    • 2005
  • The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of an air-conditioning system. In this study, partial faults for fans, coils, dampers, and sensors of a constant volume air handling unit were considered. A fuzzy algorithm was developed to detect and diagnose these faults. Diagnostic results by the fuzzy algorithm were compared with those by the model reference algorithm. The fuzzy algorithm showed better results in diagnostic accuracies.

Fault Detection and Diagnosis of the Deaerator System in Nuclear Power Plants (원전 탈기기 시스템의 수위 측정 센서의 고장 검출 및 진단)

  • Kim, Bong-Seok;Lee, In-Soo;Lee, Yoon-Joon;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.107-118
    • /
    • 2003
  • In this paper, dynamic control model is formulated by considering the geometrical structure of the deaerator storage tank in nuclear power plant and input-output flow rate at steady state, and we describe fault detection and diagnosis (FDD) scheme based on the adaptive estimator. The performance and effectiveness of the proposed FDD scheme are evaluated by applying real operating data obtained from the YOUNGKWANG 3 & 4 FSAR.

  • PDF

Fault Detection and Diagnosis of an Air Handling Unit Based on Rule Bases (룰 베이스를 이용한 공조기의 고장검출 및 진단)

  • 한도영;주명재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.552-559
    • /
    • 2002
  • The fault detection and diagnosis (FDD) technology may be applied in order to decrease the energy consumption and the maintenance cost of the air conditioning system. In this study, rule bases and curve fitting models were used to detect faults in an air handling unit. Gradually progressed faults, such as the fan speed degradation, the coil water leakage, the humidifier nozzle clogging, the sensor degradation and the damper stoppage, were applied to the developed FBD system. Simulation results show good detections and diagnoses of these faults. Therefore, this method may be effectively used for the fault detection and diagnosis of the air handling unit.

Satellite Fault Detection and Isolation Using 2 Step IMM (2 단계 상호간섭 다중모델을 이용한 인공위성 고장 검출)

  • Lee, Jun-Han;Park, Chan-Gook;Lee, Dal-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.144-152
    • /
    • 2011
  • This paper presents a new scheme for fault detection and isolation in the satellite system. The purpose of this paper is to develop a fault detection, isolation and diagnosis algorithm based on the bank of interacting multiple model (IMM) filter for both total and partial faults in a satellite attitude control system (ACS). In this paper, IMM are utilized for detection and diagnosis of anticipated actuator faults in a satellite ACS. Other fault detection, isolation (FDI) schemes using conventional IMM are compared with the proposed FDI scheme. The FDI procedure is developed in two stages. In the first stage, 11 EKFs actuator fault models are designed to detect wherever actuator faults occur. In the second stage of the FDI scheme, two filters are designed to identify the fault type which is either the total or partial fault. An important feature of the proposed FDI scheme can decrease fault isolation time and figure out not only fault detection and isolation but also fault type identification.

Real-time steady state identification technology of a heat pump system to develop fault detection and diagnosis system (열펌프의 고장감지 및 진단시스템 구축을 위한 실시간 정상상태 진단기법 개발)

  • Kim, Min-Sung;Yoon, Seok-Ho;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.282-287
    • /
    • 2008
  • Identification of steady-state is the first step in developing a fault detection and diagnosis (FDD) system. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representing measurements were selected as key features for steady-state detection. The optimized moving window size and the feature thresholds was suggested through startup transient test and no-fault steady-state test. Performance of the steady-state detector was verified during indoor load change test. From the research, the general methodology to design a moving window steady-state detector was provided for vapor compression applications.

  • PDF

Fault Modeling and Diagnosis using Wavelet Decomposition in Squirrel-Cage Induction Motor Under Mixed Fault Condition (복합고장을 가지는 농형유도전동기의 모델링과 웨이블릿 분해를 이용한 고장진단)

  • Kim, Youn-Tae;Bae, Hyeon;Park, Jin-Su;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.691-697
    • /
    • 2006
  • Induction motors are critical components in industrial process. So there are many research in the condition based maintenance, online monitoring system, and fault detection. This paper presents a scheme on the detection and diagnosis of the three-phase squirrel induction motor under unbalanced voltage, broken rotor bar, and a combination of these two faults. Actually one fault happen in operation, it influence other component in motor or cause another faults. Accordingly it is useful to diagnose and detect a combination fault in induction motor as well as each fault. The proposed fault detection and diagnosis algorithm is based on the stator currents from the squirrel induction motor and simulated with the aid of Matlab Simulink.

Fault Diagnosis Using Wavelet Transform Method for Random Signals (불규칙 신호의 웨이블렛 기법을 이용한 결함 진단)

  • Kim Woo-Taek;Sim Hyoun-Jin;Abu Aminudin bin;Lee Hae-Jin;Lee Jung-Yoon;Oh Jae-Eung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.80-89
    • /
    • 2005
  • In this paper, time-frequency analysis using wavelet packet transform and advanced-MDSA (Multiple Dimensional Spectral Analysis) which based on wavelet packet transform is applied fur fault source identification and diagnosis of early detection of fault non-stationary sound/vibration signals. This method is analyzing the signal in the plane of instantaneous time and instantaneous frequency. The results of ordinary coherence function, which obtained by wavelet packet analysis, showed the possibility of early fault detection by analysis at the instantaneous time. So, by checking the coherence function trend, it is possible to detect which signal contains the major fault signal and to know how much the system is damaged. Finally, It is impossible to monitor the system is damaged or undamaged by using conventional method, because crest factor is almost constant under the range of magnitude of fault signal as its approach to normal signal. However instantaneous coherence function showed that a little change of fault signal is possible to monitor the system condition. And it is possible to predict the maintenance time by condition based maintenance for any stationary or non-stationary signals.

Object Oriented Fault Detection for Fault Models of Current Testing (전류 테스팅 고장모델을 위한 객체기반의 고장 검출)

  • Bae, Sung-Hwan;Han, Jong-Kil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.443-449
    • /
    • 2010
  • Current testing is an effective method which offers higher fault detection and diagnosis capabilities than voltage testing. Since current testing requires much longer testing time than voltage testing, it is important to note that a fault is untestable if the two nodes have same values at all times. In this paper, we present an object oriented fault detection scheme for various fault models using current testing. Experimental results for ISCAS benchmark circuits show the effectiveness of the proposed method in reducing the number of faults and its usefulness in various fault models.

Probability theory based fault detection and diagnosis of induction motor system (확률기법을 이용한 유도전동기의 고장진단 알고리즘 연구)

  • Kim, Kwang-Su;Cho, Hyun-Cheol;Song, Chang-Hwan;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.228-229
    • /
    • 2008
  • This paper presents stochastic methodology based fault diction and diagnosis algorithm for induction motor systems. First, we construct probability distribution model from healthy motors and then probability distribution for faulty motors is recursively calculated by means of the proposed probability estimation. We measure motor current with hall sensors as system state. The estimated probability is compared to the model to generate a residue signal which is utilized for fault detection and diagnosis, that is, where a fault is occurred. We carry out real-time induction motor experiment to evaluate efficiency and reliability of the proposed approach.

  • PDF

Application of Joint Electro-Chemical Detection for Gas Insulated Switchgear Fault Diagnosis

  • Li, Liping;Tang, Ju;Liu, Yilu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1765-1772
    • /
    • 2015
  • The integrity of the gas insulated switchgear (GIS) is vital to the safety of an entire power grid. However, there are some limitations on the techniques of detecting and diagnosing partial discharge (PD) induced by insulation defects in GIS. This paper proposes a joint electro-chemical detection method to resolve the problems of incomplete PD data source and also investigates a new unique fault diagnosis method to enhance the reliability of data processing. By employing ultra-high frequency method for online monitoring and the chemical method for detecting SF6 decomposition offline, the acquired data can form a more complete interpretation of PD signals. By utilizing DS evidence theory, the diagnostic results with tests on the four typical defects show the validity of the new fault diagnosis system. With higher accuracy and lower computation cost, the present research provides a promising way to make a more accurate decision in practical application.