International Journal of Fuzzy Logic and Intelligent Systems
/
v.16
no.3
/
pp.173-180
/
2016
Fault detection and diagnosis is a task to monitor the occurrence of faults and pinpoint the exact location of faults in the system. Fault detection and diagnosis is gaining importance in development of efficient, advanced and safe industrial systems. Three phase inverter is one of the most common and excessively used power electronic system in industries. A fault diagnosis system is essential for safe and efficient usage of these inverters. This paper presents a fault detection technique and fault classification algorithm. A new feature extraction approach is proposed by using three-phase load current in three-dimensional space and neural network is used to diagnose the fault. Neural network is responsible of pinpointing the fault location. Proposed method and experiment results are presented in detail.
The Transactions of the Korean Institute of Electrical Engineers
/
v.40
no.1
/
pp.120-127
/
1991
The purpose of this study is to develop a fault detection and diagnosis scheme that can monitor process fault and instrument fault of a steam generator. The suggested scheme consists of a Kalman filter and two bias estimators. Method of detecting process and instrument fault in a steam generator uses the mean test on the residual sequence of Kalman filter, designed for the unfailed system, to make a fault decision. Once a fault is detected, two bias estimators are driven to estimate the fault and to discriminate process fault and instrument fault. In case of process fault, the fault diagnosis of outlet temperature, feed-water heater and main steam control value is considered. In instrument fault, the fault diagnosis of steam genrator's three instruments is considered. Computer simulation tests show that on-line prompt fault detection and diagnosis can be performed very successfully.
Sensor faults in nuclear power plant instrumentation have the potential to spread negative effects from wrong signals that can cause an accident misdiagnosis by plant operators. To detect sensor faults and make accurate accident diagnoses, prior studies have developed a supervised learning-based sensor fault detection model and an accident diagnosis model with faulty sensor isolation. Even though the developed neural network models demonstrated satisfactory performance, their diagnosis performance should be reevaluated considering real-time connection. When operating in real-time, the diagnosis model is expected to indiscriminately accept fault data before receiving delayed fault information transferred from the previous fault detection model. The uncertainty of neural networks can also have a significant impact following the sensor fault features. In the present work, a pilot study was conducted to connect two models and observe actual outcomes from a real-time application with an integrated system. While the initial results showed an overall successful diagnosis, some issues were observed. To recover the diagnosis performance degradations, additive logics were applied to minimize the diagnosis failures that were not observed in the previous validations of the separate models. The results of a case study were then analyzed in terms of the real-time diagnosis outputs that plant operators would actually face in an emergency situation.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.16
no.9
/
pp.872-880
/
2004
The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of the air-conditioning system. In this study, an air handling unit fault test apparatus was built and fault diagnosis algorithms were applied to diagnose various faults of an air handling unit. Test results showed the good diagnosis for applied faults. Therefore, these algorithms may be effectively used to develope the real time fault detection and diagnosis system for the air handling unit.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.27
no.11
/
pp.587-595
/
2015
In this study, fault symptoms were simulated and analyzed for a single-effect absorption chiller. The fault patterns of fault detection parameters were tabulated using the fault symptom simulation results. Fault detection and diagnosis by a process history-based method were performed for the in-situ experiment of a single-effect absorption chiller. Simulated fault modes for the in-situ experimental study are the decreases in cooling water and chilled water mass flow rates. Five no-fault reference models for fault detection of a single-effect absorption chiller were developed using fault-free steady-state data. A sensitivity analysis of fault detection using the normalized distance method was carried out with respect to fault progress. When mass flow rates of the cooling and chilled water decrease by more than 19.3% and 17.8%, respectively, the fault can be detected using the normalized distance method, and COP reductions are 6.8% and 4.7%, respectively, compared with normal operation performance. The pattern recognition method for fault diagnosis of a single-effect absorption chiller was found to indicate each failure mode accurately.
Journal of Institute of Control, Robotics and Systems
/
v.18
no.12
/
pp.1090-1095
/
2012
In this paper, we propose a model-based fault diagnosis method applied to vibration data. The fault detection is performed by comparing estimated parameters with normal parameters and deciding if the observed changes can be explained satisfactorily in terms of noise or undermodelling. The key feature of this method is that it accounts for the effects of noise and model mismatch. And we aslo design a classifier for the fault isolation by applying the multiclass SVM (Support Vector Machine) to the estimated parameters. The proposed fault detection and isolation methods are applied to an engine vibration data to show a good performance. The proposed fault detection method is compared with a signal-based fault detection method through a performance analysis.
Cordeiro, Armando;Palma, Joao C.P.;Maia, Jose;Resende, Maia J.
Journal of Power Electronics
/
v.14
no.6
/
pp.1272-1280
/
2014
This paper presents solutions for fault detection and diagnosis of two-level, three phase voltage-source inverter (VSI) topologies with IGBT devices. The proposed solutions combine redundant standby VSI structures and contactors (or relays) to improve the fault-tolerant capabilities of power electronics in applications with safety requirements. The suitable combination of these elements gives the inverter the ability to maintain energy processing in the occurrence of several failure modes, including short-circuit in IGBT devices, thus extending its reliability and availability. A survey of previously developed fault-tolerant VSI structures and several aspects of failure modes, detection and isolation mechanisms within VSI is first discussed. Hardware solutions for the protection of power semiconductors with fault detection and diagnosis mechanisms are then proposed to provide conditions to isolate and replace damaged power devices (or branches) in real time. Experimental results from a prototype are included to validate the proposed solutions.
Journal of Institute of Control, Robotics and Systems
/
v.4
no.1
/
pp.123-133
/
1998
In this paper, an algorithm of fault detection and diagnosis during operation of induction motors under the condition of various loads and rates is investigated. For this purpose, the spectrum pattern of input currents is used in monitoring the state of induction motors, and by clustering the spectrum pattern of input currents, the newly occurrence of spectrum patterns caused by faults are detected. For the diagnosis of the fault detected, a fuzzy fault tree is designed, and the fuzzy relation equation representing the relation between an induction motor fault and each fault type, is solved. The solution of the fuzzy relation equation shows the possibility of occurence of each fault. The results obtained are summarized as follows : (1) Using clustering algorithm by unsupervised learning, an on-line fault detection method unaffected by the characteristics of loads and rates is implemented, and the degree of dependency for experts during fault detection is reduced. (2) With the fuzzy fault tree, the fault diagnosis process become systematic and expandable to the whole system, and the diagnosis for sub-systems can be made as an object-oriented module.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.19
no.7
/
pp.726-735
/
2009
In this paper, we propose an approach to signal model-based fault detection and diagnosis system for induction motors. The current fault detection techniques used in the industry are limit checking techniques, which are simple but cannot predict the types of faults and the initiation of the faults. The system consists of two consecutive processes: fault detection process and fault diagnosis process. In the fault detection process, the system extracts the significant features from sound signals using combination of variance, cross-correlation and wavelet. Consequently, the pattern classification technique is applied to the fault diagnosis process to recognize the system faults based on faulty symptoms. The sounds generated from different kinds of typical motor's faults such as motor unbalance, bearing misalignment and bearing loose are examined. We propose two approaches for fault detection and diagnosis system that are waveletand-variance-based and wavelet-and-crosscorrelation-based approaches. The results of our experiment show more than 95 and 78 percent accuracy for fault classification, respectively.
Fault detection and isolation are related to system monitoring, identifying when a fault has occurred, and determining the type of fault and its location. Fault detection is utilized to determine whether a problem has occurred within a certain channel or area of operation. Fault detection and diagnosis have become increasingly important for many technical processes in the development of safe and efficient advanced systems for supervision. This paper presents an integrated technique for fault diagnosis and classification for open- and short-circuit faults in three-phase inverter circuits. Discrete wavelet transform and principal component analysis are utilized to detect the discontinuity in currents caused by a fault. The features of fault diagnosis are then extracted. A fault dictionary is used to acquire details about transistor faults and the corresponding fault identification. Fault classification is performed with a fuzzy logic system and relevance vector machine (RVM). The proposed model is incorporated with a set of optimization techniques, namely, evolutionary particle swarm optimization (EPSO) and cuckoo search optimization (CSO), to improve fault detection. The combination of optimization techniques with classification techniques is analyzed. Experimental results confirm that the combination of CSO with RVM yields better results than the combinations of CSO with fuzzy logic system, EPSO with RVM, and EPSO with fuzzy logic system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.