• Title/Summary/Keyword: fault current condition

Search Result 249, Processing Time 0.025 seconds

Analysis of Insulation Diagnosis and Failure in Stator Windings of Air-Cooled Gas Turbine Generator

  • Kim, Hee-Dong;Kong, Tae-Sik;Kim, Kyeong-Yeol
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.421-424
    • /
    • 2016
  • In order to evaluate the insulation deterioration in the stator windings of air-cooled gas turbine generators(119.2 MVA, 13.8 kV) which has been operating for more than 15 years, diagnostic test and AC dielectric breakdown test were performed on phases A, B and C. Diagnostic test included measurements of AC current, dissipation factor, partial discharge (PD) magnitude and capacitance. ${\Delta}I$ and ${\Delta}tan{\delta}$ in all three phases (A, B, and C) of generator stator windings showed that they were in good condition but PD magnitude indicated marginally serviceable condition. After the diagnostic test, an AC overvoltage test was performed by gradually increasing the voltage applied to the generator stator windings until electrical insulation failure occurred, in order to determine the breakdown voltage. Although phase A of generator stator windings failed at breakdown voltage of 29.0 kV, phases B and C endured the 29.0 kV. The breakdown voltage in all three phases was higher than that expected for good-quality windings (28.6 kV) in a 13.8 kV class generator.

Power System Security Control Method for Quench Characteristic of High-Temperature Superconducting Cable (초전도 케이블의 Quench 특성에 대한 계통안전성 제어방식)

  • Lee, Geun-Joon;Hwang, Si-Dol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.29-35
    • /
    • 2005
  • This paper presents the basic quench protection idea for the HTS(High-Temperature Superconducting) cable. In Korea power system, the transfer capability of transmission line is limited by the voltage stability, HTS cable could be one of the countermeasure to enhance the transfer limit with its higher current capacity and lower impedance[1]. However, the quench characteristic makes not only HTS cable to loss its superconductivity, but also change the impedance of the transmission line and power system operating condition dramatically. This pheonominum threats HTS cable safety as well as power system security, therefore a proper protection scheme and security control counterplan have to be established before HTS cable implementation. In this paper, the quench characteristics of HTS cable for the fault current based on heat balance equation was established and a proper protection method regarding conventional protection system was suggested.

An Autonomous Optimal Coordination Scheme in a Protection System of a Power Distribution Network by using a Multi-Agent Concept

  • Hyun, Seung-Ho;Min, Byung-Woon;Jung, Kwang-Ho;Lee, Seung-Jae;Park, Myeon-Song;Kang, Sang-Hee
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.3
    • /
    • pp.89-94
    • /
    • 2002
  • In this paper, a protection system using a Multi-Agent concept for power distribution networks is proposed. Every digital over current relay(OCR) is developed as an agent by adding its own intelligence, self-tuning and communication ability. The main advantage of the Multi-Agent concept is that a group of agents work together to achieve a global goal which is beyond the ability of each individual agent. In order to cope with frequent changes in the network operation condition and faults, an OCR agent, suggested in this paper, is able to detect a fault or a change in the network and find its optimal parameters for protection in an autonomous manner considering information of the whole network obtained by communication between other agents. Through this kind of coordination and information exchanges, not only a local but also a global protective scheme is completed. Simulations in a simple distribution network show the effectiveness of the suggested protection system.

A Study on the Development of a Remote Monitoring Equipment for Ground Fault Current by Lightning Strike (낙뢰에 의한 지락전류 원격 감시장치에 관한 연구)

  • Pyo, Se Young;Kim, Tag Yong;Kim, Kee Hwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.783-788
    • /
    • 2020
  • Surges generated by direct strike or induction of lightning, frequent opening and closing of power system breakers, etc. cause excessive overvoltage, which can interfere with normal operation of transformers, circuit breakers, and power equipment. In order to prevent such phenomena, this study goes further from the method of establishing countermeasures by installing lightning arresters on power equipment or lines in parallel, and furthermore, remotely checking the condition of the lightning arrester and preparing immediate countermeasures when an event occurs. The purpose of the study is to prevent damage in advance.

ZigBee Wireless Sensor Nodes and Network For Wind Turbine Condition Monitoring (풍력발전기 상태 모니터링을 위한 ZigBee 무선 센서노드 및 네트워크)

  • Kim, Hyeon-Ho;Ahn, Sung-Bum;Choi, Sang-Jin;Pan, Jae-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4186-4192
    • /
    • 2012
  • Because wind turbines are larger and more off-shore construction due to economic and environmental factors, it is more difficult to access the wind turbine as well as the necessary parts and the maintenance costs are increasing. So, we need to minimize fault elements and to prevent a secondary accident at failure through monitoring to reduce maintenance costs and to increase reliability of operation. In this paper we have implemented ZigBee based wireless sensor nodes and network for wind turbine condition monitoring using temperature, humidity, voltage, current, wind direction, and wind speed sensors. ZigBee wireless sensor nodes signals are transmitted to a central monitoring system via routers. Also, the sensor signals are collected and processed using LabVIEW program to monitor the wind turbine conveniently. The administrators and users can monitor the condition of wind turbine at remote site in real time over TCP/IP.

Polarity discrimination of stator windings for 3 phase induction motors by using DC differential signals between mutual inductive voltages (유도기전력의 차동신호를 이용한 3상유도전동기 고정자 권선의 극성판별)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1141-1145
    • /
    • 2014
  • When the stator windings of 3 phase induction motors are in wrong condition, the mutual inductive responses between windings can be utilized for the purpose of diagnosing motors in that fault windings affect even the responses by DC excitation. Three phase induction motors are supposed to generate consistent inductive voltages at the remaining windings when exciting DC current is given to one of 3 windings, while the inconsistence of their voltages indicates the existence of disorder at electric motors. This study describes how the exciting current to one of three windings cause the other windings to create induced voltages, analyzing responses by transfer functions, and discloses whether or not the balance relation at two windings is normal in the way of measuring the differential voltage of their outputs. For experiment, common analog multi-testers is used for applying exciting current and measuring the output signal to confirm whether the proposed method is useful enough to be able to discriminate wrong polarities of windings onboard vessels including also the case of exciting current by AC.

A Parallel Inverter System with an Instantaneous Power Balance Control (순시전력 균형제어를 이용한 병렬 인버터 시스템)

  • Sun, Young-Sik;Lee, Chang-Seok;Kim, Si-Kyung;Kim, Chang-Bong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.19-28
    • /
    • 2000
  • The parallel inverter is widely utilized because of its fault-tolerance capability, high-current output at constant voltages and system modularity. The conventional paralled inverter usually employes an active and reactive power control or a frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes novel control scheme for equalization of output power between the parallel connected inverters. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employes a instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Futhermore, the proposed constrol scheme is verified through the simulation in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

Analysis of Packet Transmission Delay in the DC Power-Line Fault Management System using IEEE 802.15.4 (IEEE 802.15.4를 적용한 직류배전선로 장애관리시스템에서 패킷전송 지연시간 분석)

  • Song, Han-Chun;Hwang, Sung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.259-264
    • /
    • 2014
  • IEEE 802.15.4 has been emerging as the popular choice for various monitoring and control applications. In this paper, a fault management system for DC power-lines has been designed using IEEE 802.15.4, in order to monitor DC power-lines in real time, and to rapidly detect faults and shut off the line where such faults occur. Numbers were allocated for each node and unslotted CSMA-CA method of IEEE 802.15.4 was used, the performance of which was analyzed by a simulation. For such purpose, a total of 60 bits of the control data consisting of 16 bits of the current, 16 bits of the amplitude, 28 bits of the terminal state data were sent out, and the packet transfer rate and the transmission delay time of the fault management system for DC power-lines were measured and analyzed. When the traffic load was 330 packets per second or lower, the average delay time was shown to be shorter than 0.02 seconds, and when the traffic load was 260 packets per second or lower, the packet transfer rate was shown to be 99.99% or higher. Therefore, it was confirmed that the stringent condition of US Department of Energy (DOE) could be satisfied if the traffic load was 260 packets per second or lower, The results of this study can be utilized as basic data for the establishment of the fault management system for DC power-lines using IEEE 802.15.4.

Development of Asynchronous Blocking Algorithm through Asynchronous Case Study of Steam Turbine Generator (스팀터빈 발전기 비동기 투입 사례연구를 통한 비동기 방지 알고리즘 개발)

  • Lee, Jong-Hweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1542-1547
    • /
    • 2012
  • Asynchronous phenomenon occurs on the synchronous generators under power system when a generator's amplitude of electromagnetic force, phase angle, frequency and waveform etc become different from those of other synchronous generators which can follow instantly varying speed of turbine. Because the amplitude of electromagnetic force, phase frequency and waveform differ from those of other generators with which are to be put into parallel operation due to the change of excitation condition for load sharing and the sharing load change, if reactive current in the internal circuit circulates among generators, the efficiency varies and the stator winding of generators are overheated by resistance loss. When calculation method of protection settings and logic for protection of generator asynchronization will be recommended, a distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome asynchronizing protection, this paper describes an improved backup protection coordination scheme using a new logic that will be suggested.

A Vibration Mode Analysis of Cable-type Winding for Distribution Power Transformer by using Transfer Matrix Method (변환행렬법을 이용한 케이블 권선형 배전용 변압기 귄선의 진동모드 해석)

  • Shin, Pan-Seok;Chung, Hyun-Koo;Yoon, Koo-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.85-91
    • /
    • 2009
  • This paper proposes a simulation method of the internal winding fault to calculate the short-circuit current, electromagnetic force and vibration mode in a distribution power transformer by using FEM program(FLUX2D) and analytic algorithm. A usage of the Transfer matrix method is also presented for the vibration mode analysis of the cable-type winding of power transformer. The equations of the winding are approximated by the series expansions of the distributed mass mode and Timoshenko's beam theory. The simulation examples are provided for the cable type winding of the transformer(22.9[kV]/220[V], 1,000[kVA]) to verify the method. The proposed Transfer Matrix Method is also verified by the ANSYS program for the vibration mode of the transformer winding. The method presented may serve as one of the useful tools in the electromagnetic force and vibration analysis of the transformer winding under the short circuit condition.