• Title/Summary/Keyword: fault current characteristics

Search Result 607, Processing Time 0.026 seconds

Analysis of a Fault Characteristics in the Power Network with Distributed Generators (분산전원 연계 배전계통의 사고 특성 분석)

  • Jang, Sung-Il;Park, Je-Young;Choi, Jeong-Hwan;Jeong, Jong-Chan;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.65-68
    • /
    • 2002
  • Distributed Generators (DG) are rapidly increasing and most of them are interconnected with distribution network to supply power into the network. Therefore, DG may make significant impacts on distribution system operation. protection, and control with respect to the voltage regulation, voltage flicker, harmonics, fault current levels, the losses of the network, etc. These impacts would be demerits for both of DG and distribution networks. And the operation of DG may be influenced by the abnormal grid condition such as disturbances occurred in the neighboring distribution feeders as well as the feeder directly connected with DG. This paper describes the influence of fault occurred in the interconnected power network on the DG operation and the impact of DG on the network load during the interruptions of utility power.

  • PDF

A Study on the Operating Characteristics of Molded Case Circuit Breakers according to Temperature Rise (온도상승에 따른 배선용 차단기의 동작특성에 관한 연구)

  • Jung, Da-Woon;Kim, Jae-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.8-13
    • /
    • 2015
  • Molded Case Circuit Breakers (MCCBs) are typically used to provide over current protection for electrical safety caused by short circuit faults and overloads in indoor low voltage power systems. The MCCB automatically connects and disconnects loads from the electrical source when the current reaches a value and duration that will cause an excessive. However, the MCCB sometimes is not interrupted due to a malfunction, nuisance tripping, or in a fire. Ensuring electrical safety is very important in a indoor low voltage power system. This paper presents the operating characteristics of MCCBs according to a temperature rise from room temperature to 160 degrees Celsius delivered by a radiant panel heater. The ABS 54c(rated current: 30A) of the hydraulic magnetic trip type was used in the experiments. The signals of temperature, voltage, and current were measured using the high accuracy Signal Conditioning Extensions for Instrumentation (SCXI) measurement system with the LabVIEW program manufactured by National Instruments. The operating characteristics were measured as functions of current amplitude and ramp-up rate. The MCCB tripping time decreased as a result of increasing current amplitude and ramp-up rate under a temperature rise condition, because the temperature and level of the current are directly proportional to the tripping time. Additionally, an instantaneous operation was observed after 8 times of the rated current, and the MCCB began to melt a surface temperature of around 300 degrees Celsius of. The experimental results coincided well with the operating curve.

Characteristics of Hybrid-Type SFCL by the Number of Secondary Windings with YBCO Films (2차회로의 수에 따른 하이브리드형 초전도 한류기의 동작 특성)

  • Cho Yong-Sun;Choi Hyo-Sang;Park Hyoung-Min
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.2
    • /
    • pp.62-66
    • /
    • 2006
  • We investigated the characteristics of the hybrid-type superconducting fault current limiter (SFCL) by the number of secondary windings. The SFCL consists of a transformer, which has a primary winding and several secondary windings with serially connected $YB_{a2}Cu_{3}O_{7}$ films. In order to increase the capacity. of the SFCL, the serial connection between each current limiting unit is necessary. Resistive-type SFCL has a difficulty in quenching simultaneously between the units due to slight differences of their critical current densities. The hybrid-type SFCL could achieve the simultaneous quenching through the electrical isolation and the mutual flux linkage among the units. We confirmed that the capacity of the SFCL could be increased effectively through the simultaneous quenching among the units. In addition, the power burden of the system could be reduced by adjusting the number of secondary windings. We will investigate the method to increase the capacity through serial and Parallel connections among current limiting units.

Fault Diagnosis of Solar Power Inverter Using Characteristics of Trajectory Image of Current And Tree Model (전류 궤적 영상의 특징과 트리모델을 이용한 태양광 전력 인버터의 고장진단)

  • Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.102-108
    • /
    • 2010
  • The photovoltaic system changes solar energy into DC by solar cell and this DC is inverted into AC which is used in general houses by inverter. Recently, the use of power of the photovoltaic system is increased. Therefore, the study of 3 phase solar system to transmit large power is very important. This paper proposes a method that finds simply faults and diagnoses the switch open faults of 3-phase pulse width modulation (PWM) inverter of grid-connected photovoltaic system. The proposed method in $\alpha\beta$ plane uses the patterns of trajectory image as the characteristic parameters and differenciates a normal state and open states of switches. Then, the result is made into tree. The tree is composed of 21 fault patterns and the parameters to classify faults are a shape, a trajectory area, a distributed angle, and a typical vector angle. The result shows that the proposed method diagnosed fault diagnoses, classified correctly them, and made a pattern tree by fault patterns.

A Study on the Operational Characteristic of Distance Relay According to Power System Condition (계통조건에 의한 거리계전기의 응동특성에 관한 연구)

  • Jung, Chang-Ho;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.290-293
    • /
    • 2001
  • This paper presents the reach accuracy of a distance relay for protection of transmission line according to power system conditions. The apparent impedance of distance relay is considerably affected by source impedance, load current, power factor, fault point and resistance etc. For protective coordination on the variables power system parameters, trip characteristics of distance relay at sending and receiving terminal are discussed.

  • PDF

A NOVEL NEURAL-NETWORK BASED CURRENT CONTROL SCHEME FOR A THREE-LEVEL CONVERTER

  • Choi, J.Y.;Song, J.H.;Choy, I.;Gu, S.W.;Huh, S.H.
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.352-356
    • /
    • 1997
  • This paper present the design of a novel neural-network (NN) based pulse-width modulation (PWM) techniques for a three-level power converter of electric trains along with nonlinear mapping of essential switching patterns and fault tolerance, which are inherent characteristics of NNs. Considering the importance of safety, power factor and harmonics of electric train power converters, two-level type and three-level type of power converters using NNs are precisely investigated and compared in computer simulation. A computer simulation shows that a new current control scheme provides an improved performance over a fixed-band hysteresis current control in many aspects.

  • PDF

Surge Characteristics Analysis and Reduction Method of Vacuum Circuit Breaker (진공차단기 스위칭 써지 특성 해석 및 저감 방안)

  • Kim, Jong-Gyeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.190-195
    • /
    • 2013
  • Vacuum circuit breaker(VCB) has been widely used for interruption of load current and fault current for high voltage motor in the industrial field. Its arc extinguishing capability is excellent compared to other breakers. But it has the potential to cause multi reignition surge by high extinguishing capability. Surge voltage is generated by the opening and closing of VCB. Multi reignition surge of VCB is steep-fronted waveform. It may have a detrimental effect on the motor winding insulation. So, most of users install a protection device to limit steep-front waveform at the motor terminal or breaker side. So, most of users install a protection device at the motor terminal or breaker side. This protective device is surge absorber(SA) such as ZnO and RC type. In this study, we analyzed whether there is any effect when two type SA is applied to the VCB multi reignition surge. We confirmed that ZnO SA is slightly more effective than RC SA for reduction of multi reignition surge.

A Study on the High Temperature Deformation Behavior of a Solid Solution Aluminium Alloy (알루미늄 고용체 합금의 고온변형 거동에 관한 연구)

  • Kim, Ho-Gyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.346-351
    • /
    • 1997
  • The creep characteristics of an Al-5wt.% Ag alloy including the stress exponent, the activation energy for creep and the shape of the creep curve were investigated at a normalized shear stress extending from $ 10^{-5}{\;}to{\;}3{\times}10^{-4}$ and in the temperature range of 640-873 K, where silver is in solid solution. The experimental results shows that the stress exponent is 4.6, the activation energy is 141 kJ/mole, and the stacking fault energy is $180{\;}mJ/m^2$, suggesting that the creep behavior of Al-5 wt.% Ag is similiar to that reported for pure aluminum, and that under the current experimental conditions, the alloy behaves as a class II(metal class). The above creep characteristics obtained for Al-5 wt.% Ag are discussed in the light of prediction regarding deformation mechanisms in solid solution alloys.

Operational Characteristics of Transformer-Type SFCL with or without Neutral Line between the Secondary windings and Superconducting units (2차 권선과 초전도 사이의 중성선 유무에 따른 변압기형 초전도 한류기의 동작특성)

  • Cho, Yong-Sun;Choi, Hyo-Sang;Go, Sung-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1268-1273
    • /
    • 2011
  • The study on power capacity increase of superconducting fault current limiter (SFCL) is one of the most important researches to apply a SFCL in the power system. To achieve this, we thought that the unbalanced quenching problem generated in series connection of superconducting units should be solved. In this paper, we investigated the quenching characteristics of superconducting units in the transformer-type SFCL with or without the neutral line between secondary windings and superconducting units. In case of transformer-type SFCL without neutral line, the connection structure of superconducting units is identical to that of the resistive-type SFCL connected in series. Therefore, the unbalanced quenching was occurred by difference of critical current between superconducting units. However, in case of transformer-type SFCL with neutral line, the superconducting units with different critical current were simultaneously quenched. It was because the currents induced by secondary winding were separately flowed through the superconducting units. By these results, we confirmed that the resistances and consumption powers of the superconducting units were equally generated.

The Characteristics Analysis of a PMSM with Current Angle Variations according to Stator Winding Arrangements (전류위상 변화 시 고정자 권선방법에 따른 이중 3상 영구자석 동기 전동기의 특성 해석)

  • Kim, Tae Heoung
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.441-445
    • /
    • 2020
  • A Permanent Magnet Synchronous Motor (PMSM) for an electrical power steering system (EPS) is adopting various dual three-phase type stator windings to get the high fault tolerance capability when the motor runs at the failure condition. In this paper, we analyze the effects of stator winding arrangements on the characteristics such as torque and efficiency of the PMSM with leading and lagging current angle variations using finite element method. As a result, the most valuable design criteria are proposed to select stator winding method. Especially, we suggest the most appropriate winding method in terms of torque and efficiency, extending constant output area and decreasing noise and torque ripples.