• 제목/요약/키워드: fault classification

검색결과 307건 처리시간 0.03초

SVDD기법을 이용한 하이브리드 전기자동차 충-방전시스템의 고장검출 알고리듬 (Fault Detection Algorithm of Charge-discharge System of Hybrid Electric Vehicle Using SVDD)

  • 나상건;양인범;허훈
    • 한국소음진동공학회논문집
    • /
    • 제21권11호
    • /
    • pp.997-1004
    • /
    • 2011
  • A fault detection algorithm of a charge and discharge system to ensure the safe use of hybrid electric vehicle is proposed in this paper. This algorithm can be used as a complementary way to existing fault detection technique for a charge and discharge system. The proposed algorithm uses a SVDD technique, which additionally utilizes two methods for learning a large amount of data; one is to incrementally learn a large amount of data, the other one is to remove the data that does not affect the next learning using a new data reduction technique. Removal of data is selected by using lines connecting support vectors. In the proposed method, the data processing speed is drastically improved and the storage space used is remarkably reduced than the conventional methods using the SVDD technique only. A battery data and speed data of a commercial hybrid electrical vehicle are utilized in this study. A fault boundary is produced via SVDD techniques using the input and output in normal operation of the system without using mathematical modeling. A fault detection simulation is performed using both an artificial fault data and the obtained fault boundary via SVDD techniques. In the fault detection simulation, fault detection time via proposed algorithm is compared with that of the peak-peak method. Also the proposed algorithm is revealed to detect fault in the region where conventional peak-peak method is never able to do.

웨이브렛 변환을 이용한 고저항 사고 검출 (High Impedance Fault Detection Based on Wavelet Transform)

  • 정영식;김동욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.263-264
    • /
    • 2008
  • A method for high impedance fault(HIF) detection based on wavelet transform is presented in this paper. HIF is detected and classified by obtaining the energy distribution curve from the wavelet coefficients at each level. The energy distribution of each transient disturbance has unique deviation from sinusoidal wave in particular energy level, which is adopted to provide reliable classification of the type of transient.

  • PDF

기어의 이상검지 및 진단에 관한 연구 -Wavelet Transform해석과 KDI의 비교- (A Study on Fault Detection and Diagnosis of Gear Damages - A Comparison between Wavelet Transform Analysis and Kullback Discrimination Information -)

  • 김태구;김광일
    • 한국안전학회지
    • /
    • 제15권2호
    • /
    • pp.1-7
    • /
    • 2000
  • This paper presents the approach involving fault detection and diagnosis of gears using pattern recognition and Wavelet transform. It describes result of the comparison between KDI (Kullback Discrimination Information) with the nearest neighbor classification rule as one of pattern recognition methods and Wavelet transform to know a way to detect and diagnosis of gear damages experimentally. To model the damages 1) Normal (no defect), 2) one tooth is worn out, 3) All teeth faces are worn out 4) One tooth is broken. The vibration sensor was attached on the bearing housing. This produced the total time history data that is 20 pieces of each condition. We chose the standard data and measure distance between standard and tested data. In Wavelet transform analysis method, the time series data of magnitude in specified frequency (rotary and mesh frequency) were earned. As a result, the monitoring system using Wavelet transform method and KDI with nearest neighbor classification rule successfully detected and classified the damages from the experimental data.

  • PDF

회전기계 결함신호 진단을 위한 신호처리 기술 개발 (Signal Processing Technology for Rotating Machinery Fault Signal Diagnosis)

  • 안병현;김용휘;이종명;이정훈;최병근
    • 한국소음진동공학회논문집
    • /
    • 제24권7호
    • /
    • pp.555-561
    • /
    • 2014
  • Acoustic Emission technique is widely applied to develop the early fault detection system, and the problem about a signal processing method for AE signal is mainly focused on. In the signal processing method, envelope analysis is a useful method to evaluate the bearing problems and wavelet transform is a powerful method to detect faults occurred on rotating machinery. However, exact method for AE signal is not developed yet for the rotating machinery diagnosis. Therefore, in this paper two methods which are processed by Hilbert transform and DET for feature extraction. In addition, we evaluate the classification performance with varying the parameter from 2 to 15 for feature selection DET, 0.01 to 1.0 for the RBF kernel function of SVR, and the proposed algorithm achieved 94 % classification of averaged accuracy with the parameter of the RBF 0.08, 12 feature selection.

교통사고 영상 분석을 통한 과실 판단을 위한 딥러닝 기반 방법 연구 (Research on Deep Learning-Based Methods for Determining Negligence through Traffic Accident Video Analysis)

  • 이서영;유연휘;박효경;박병주;문일영
    • 한국항행학회논문지
    • /
    • 제28권4호
    • /
    • pp.559-565
    • /
    • 2024
  • 자율주행 차량에 대한 연구가 활발하게 이뤄지고 있다. 자율주행 차량이 등장함에 따라 기존의 차량과 자율주행 차량이 공존하는 과도기가 올 것이며, 이러한 과도기에는 사고율이 더욱 높아질 것이라 예상된다. 현재 교통사고 발생 시 손해보험협회의 '자동차 사고 과실 비율 인정기준'에 따라서 과실 비율을 측정한다. 그러나, 발생한 사고가 어떠한 유형의 사고인지 조사하는 데 소모되는 비용이 매우 크다. 또한 이미 과실 비율 책정이 완료된 사례에 대해서도 재심의를 요구하는 과실 비율 분쟁도 늘어나는 추세이다. 이러한 시간적, 물적 비용을 줄이기 위해 자동으로 과실 비율을 판단하는 딥러닝 모델을 제안하고자 한다. 본 논문에서는 ResNet-18 이미지 분류 모델과 TSN을 통한 비디오 행동 인식을 통해 사고 영상을 바탕으로 과실 비율을 판단하고자 한다. 모델이 상용화된다면, 과실 비율을 측정하는데 소요되는 시간을 획기적으로 단축할 수 있다. 또한 피의자에게 제공할 수 있는 과실 비율에 대한 객관적인 지표가 생기므로 과실 비율 분쟁도 완화될 것으로 기대된다.

서포트벡터머신 기반 PVDF 센서의 결함 예측 기법 (Fault Detection Technique for PVDF Sensor Based on Support Vector Machine)

  • 김승욱;이상민
    • 한국전자통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.785-796
    • /
    • 2023
  • 본 연구에서는 구조물 건전성 모니터링에 널리 활용되고 있는 PVDF(: Polyvinylidene fluoride) 센서에 나타날 수 있는 결함을 실시간으로 분류 및 예측하기 위한 방법론을 제안하였다. 센서 부착 환경에 따라 나타나는 센서의 결함 유형을 분류하였고, 임팩트 해머를 이용한 충격 시험을 수행하여 결함 유형에 따른 출력 신호를 획득하였다. 결함 유형에 따른 출력 신호간의 차이를 식별하기 위해 이들의 시간영역 통계 특징을 추출하여 데이터 집합을 구축하였다. 머신러닝 기반 분류 알고리즘들 중 센서 결함 유형 감지에 가장 적합한 알고리즘 선정을 위해 구축한 데이터 집합의 학습 및 이에 따른 결과를 분석하였고, 이들 중 SVM(: Support vector machine)이 가장 높은 성능을 보임을 확인하였다. 선정된 SVM 알고리즘의 추가적인 정확도 향상을 위해 하이퍼 파라미터 최적화 작업을 수행하였으며, 결과적으로 92.5%의 정확도로 센서 결함 유형을 분류하였고 이는 타 분류 알고리즘에 비하여 최대 13.95% 높은 정확도를 보였다. 본 연구에서 제안한 센서 결함 예측 기법은 PVDF 센서뿐만 아니라 실시간 구조물 건전성 모니터링을 위한 다양한 센서의 신뢰성을 확보하기 위한 기반 기술로 활용될 수 있을 것으로 사료된다.

고장수목을 이용한 변전소의 지진취약도 분석 (Seismic Fragility Analysis of Substation Systems by Using the Fault Tree Method)

  • 김민규;전영선;최인길;오금호
    • 한국지진공학회논문집
    • /
    • 제13권2호
    • /
    • pp.47-58
    • /
    • 2009
  • 본 연구에서는 변전소 시스템의 지진취약도 분석을 수행하여 변전소에 대한 지진취약도 함수를 제시하였다. 변전소는 여러 개의 설비와 구조물이 복합적으로 구성되어 있는 시스템이므로 각 설비에 대한 지진취약도 분석을 수행하여 이를 바탕으로 고장수목을 작성하여 변전소 전체의 파괴확률을 산정함으로써 변전소에 대한 지진취약도 평가를 수행하였다. 이를 위하여 국내 변전소의 현황을 파악하여 지진피해추정을 위한 변전소의 분류형식을 결정하였으며, 결정된 대표변전소 형식에 대한 평가대상 기기를 선정하였다. 대표 변전소 형식으로는 765kV, 345kV, 154kV 변전소의 GIS형 변전소로 결정하였다. 각 변전소의 취약도 검토대상 기기로는 변압기와 절연 애자를 선택하였다. 각 변전소의 변압기와 절연애자의 파괴모드와 파괴기준을 설정하여 지진취약도 곡선을 도출하였다. 최종적으로 변전소에 대한 고장수목을 이용하여 각 기기의 지진취약도 곡선으로부터 변전소 전체의 파괴확률을 산정하여 정의된 손상상태별 변전소의 지진취약도 함수를 산정하였다.

반도체 공정에서의 APC 기법 및 이상감지 및 분류 시스템 (APC Technique and Fault Detection and Classification System in Semiconductor Manufacturing Process)

  • 하대근;구준모;박담대;한종훈
    • 제어로봇시스템학회논문지
    • /
    • 제21권9호
    • /
    • pp.875-880
    • /
    • 2015
  • Traditional semiconductor process control has been performed through statistical process control techniques in a constant process-recipe conditions. However, the complexity of the interior of the etching apparatus plasma physics, quantitative modeling of process conditions due to the many difficult features constraints apply simple SISO control scheme. The introduction of the Advanced Process Control (APC) as a way to overcome the limits has been using the APC process control methodology run-to-run, wafer-to-wafer, or the yield of the semiconductor manufacturing process to the real-time process control, performance, it is possible to improve production. In addition, it is possible to establish a hierarchical structure of the process control made by the process control unit and associated algorithms and etching apparatus, the process unit, the overall process. In this study, the research focused on the methodology and monitoring improvements in performance needed to consider the process management of future developments in the semiconductor manufacturing process in accordance with the age of the APC analysis in real applications of the semiconductor manufacturing process and process fault diagnosis and control techniques in progress.

딥러닝 모델을 활용한 승강기 결함 분류 (Elevator Fault Classification Using Deep Learning Model)

  • 정영진;장찬영;강성우
    • 대한안전경영과학회지
    • /
    • 제24권4호
    • /
    • pp.1-8
    • /
    • 2022
  • Elevators are the main means of transport in buildings. A malfunction of an elevator in operation may cause in convenience to users. Furthermore, fatal accidents, such as injuries and death, may occur to the passengers also. Therefore, it is important to prevent failure before accidents happen. In related studies, preventive measures are proposed through analyzing failures, and the lifespan of elevator components. However, these methods are limited to existing an elevator model and its surroundings, including operating conditions and installed environments. Vibration occurs when the elevator is operated. Experts have classified types of faults, which are symptoms for malfunctions (failures), via analyzing vibration. This study proposes an artificial intelligent model for classifying faults automatically with deep learning algorithms through elevator vibration data, hereby preventing failures before they occur. In this study, the vibration data of six elevators are collected. The proposed methodology in this paper removes "the measurement error data" with incorrect measurements and extracts operating sections from the input datasets for proceeding deep learning models. As a result of comparing the performance of training five deep learning models, the maximum performance indicates Accuracy 97% and F1 Score 97%, respectively. This paper presents an artificial intelligent model for detecting elevator fault automatically. The users' safety and convenience may increase by detecting fault prior to the fatal malfunctions. In addition, it is possible to reduce manpower and time by assisting experts who have previously classified faults.

비동기 설비 신호 상황에서의 강건한 공정 이상 감지 시스템 연구 (Robust Process Fault Detection System Under Asynchronous Time Series Data Situation)

  • 고종명;최자영;김창욱;선상준;이승준
    • 산업공학
    • /
    • 제20권3호
    • /
    • pp.288-297
    • /
    • 2007
  • Success of semiconductor/LCD industry depends on its yield and quality of product. For the purpose, FDC (Fault Detection and Classification) system is used to diagnose fault state in main manufacturing processes by monitoring time series data collected by equipment sensors which represent various conditions of the equipment. The data set is segmented at the start and end of each product lot processing by a trigger event module. However, in practice, segmented sensor data usually have the features of data asynchronization such as different start points, end points, and data lengths. Due to the asynchronization problem, false alarm (type I error) and missed alarm (type II error) occur frequently. In this paper, we propose a robust process fault detection system by integrating a process event detection method and a similarity measuring method based on dynamic time warping algorithm. An experiment shows that the proposed system is able to recognize abnormal condition correctly under the asynchronous data situation.