• 제목/요약/키워드: fault classification

검색결과 307건 처리시간 0.028초

적응형 퍼지 시스템에 의한 송전선로보호의 고장검출 계전기법 (Fault Detection Relaying for Transmission line Protection using ANFIS)

  • 전병준
    • 한국지능시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.538-544
    • /
    • 1999
  • 본 논문에서는 송전선로의 보호를 위하여 적응형 퍼지 시스템을 도입하여 고장 유형 판별부와 고장점 추정부의 두 부분으로 구성된 새로운 고장검출기법을 개발하였다. 제안된 시스템의 퍼지 입력변수로는 전류의 정상분과 영상분 그리고 실효치를 선정하였으며 신경회로망의 학습방법에 의하여 전건부와 후건부가 적절하게 조정되었다. 제시된 기법의 효용성을 입증하기 위하여 전자과도 해석 프로그램인 EMTP로부터 수집된 데이터를 활용하였다. 시뮬레이션 결과 제안된 기법은 고장유형이 정확하게 판별되었으며 고장점 추정이 개선되었다.

  • PDF

변압기 고장 진단을 위한 하이브리드형 전문가 시스템 (A Hybrid Type Based Expert System for Fault Diagnosis in Transformers)

  • 전영재;윤용한;김재철;최도혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.143-145
    • /
    • 1996
  • This paper presents the hybrid type based expert system for fault diagnosis in transformers. The proposed system uses the novel fault diagnostic technique based on dissolved gas analysis(DGA) in oil-immersed transformers. The uncertainty of key gas analysis, norm threshold, and gas ratio boundaries are managed by using a fuzzy set. Also, the uncertainty of the fault diagnostic rules are handled by using fuzzy measures. Finally, kohnen's feature map performs fault classification in transformers. To verify the effectiveness of the proposed diagnosis technique, the hybrid type based expert system for fault diagnosis has been tested by using KEPCO's transformer gas records.

  • PDF

자율 학습 신경회로망을 이용한 고장상 선은 알고리즘 (The Discrimination of Fault Type by Unsupervised Neural Network)

  • 이재욱;최창열;장병태;이명회;노장현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.384-387
    • /
    • 2004
  • The direction and the type of a fault on a transmission line need to be identified rapidly and correctly, The work described in this paper addresses the problem encountered by a conventional algorithm in a fault type classification in double circuit line, this arises due to a mutual coupling and CT saturation under the fault condition. We present an approach to identify fault type with novel neural network on double circuit transmission line. The neural network based on combined unsupervised training method provides the ability classify the fault type by different patterns of the associated voltages and currents.

  • PDF

The Design of Fault Tolerant Dual System and Real Time Fault Detection for Countdown Time Generating System

  • Kim, Jeong-Seok;Han, Yoo-Soo
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권10호
    • /
    • pp.125-133
    • /
    • 2016
  • In this paper, we propose a real-time fault monitoring and dual system design of the countdown time-generating system, which is the main component of the mission control system. The countdown time-generating system produces a countdown signal that is distributed to mission control system devices. The stability of the countdown signal is essential for the main launch-related devices because they perform reserved functions based on the countdown time information received from the countdown time-generating system. Therefore, a reliable and fault-tolerant design is required for the countdown time-generating system. To ensure system reliability, component devices should be redundant and faults should be monitored in real time to manage the device changeover from Active mode to Standby mode upon fault detection. In addition, designing different methods for mode changeover based on fault classification is necessary for appropriate changeover. This study presents a real-time fault monitoring and changeover system, which is based on the dual system design of countdown time-generating devices, as well as experiment on real-time fault monitoring and changeover based on fault inputs.

Fault Diagnosis in Semiconductor Etch Equipment Using Bayesian Networks

  • Nawaz, Javeria Muhammad;Arshad, Muhammad Zeeshan;Hong, Sang Jeen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권2호
    • /
    • pp.252-261
    • /
    • 2014
  • A Bayesian network (BN) based fault diagnosis framework for semiconductor etching equipment is presented. Suggested framework contains data preprocessing, data synchronization, time series modeling, and BN inference, and the established BNs show the cause and effect relationship in the equipment module level. Statistically significant state variable identification (SVID) data of etch equipment are preselected using principal component analysis (PCA) and derivative dynamic time warping (DDTW) is employed for data synchronization. Elman's recurrent neural networks (ERNNs) for individual SVID parameters are constructed, and the predicted errors of ERNNs are then used for assigning prior conditional probability in BN inference of the fault diagnosis. For the demonstration of the proposed methodology, 300 mm etch equipment model is reconstructed in subsystem levels, and several fault diagnosis scenarios are considered. BNs for the equipment fault diagnosis consists of three layers of nodes, such as root cause (RC), module (M), and data parameter (DP), and the constructed BN illustrates how the observed fault is related with possible root causes. Four out of five different types of fault scenarios are successfully diagnosed with the proposed inference methodology.

FAULT-TOLERANT DESIGN FOR ADVANCED DIVERSE PROTECTION SYSTEM

  • Oh, Yang Gyun;Jeong, Kin Kwon;Lee, Chang Jae;Lee, Yoon Hee;Baek, Seung Min;Lee, Sang Jeong
    • Nuclear Engineering and Technology
    • /
    • 제45권6호
    • /
    • pp.795-802
    • /
    • 2013
  • For the improvement of APR1400 Diverse Protection System (DPS) design, the Advanced DPS (ADPS) has recently been developed to enhance the fault tolerance capability of the system. Major fault masking features of the ADPS compared with the APR1400 DPS are the changes to the channel configuration and reactor trip actuation equipment. To minimize the fault occurrences within the ADPS, and to mitigate the consequences of common-cause failures (CCF) within the safety I&C systems, several fault avoidance design features have been applied in the ADPS. The fault avoidance design features include the changes to the system software classification, communication methods, equipment platform, MMI equipment, etc. In addition, the fault detection, location, containment, and recovery processes have been incorporated in the ADPS design. Therefore, it is expected that the ADPS can provide an enhanced fault tolerance capability against the possible faults within the system and its input/output equipment, and the CCF of safety systems.

써포트 벡터머신을 이용한 전력용 변압기 고장진단 (Fault Diagnosis of Power Transformer Using Support Vector Machine)

  • 임재윤;이대종;이종필;지평식
    • 조명전기설비학회논문지
    • /
    • 제23권2호
    • /
    • pp.62-69
    • /
    • 2009
  • 본 논문에서는 전력용 변압기의 고장진단을 위해 써포트 백터머신에 기반을 둔 고장진단 알고리즘을 제안한다. 제안된 기법은 데이터 취득부, 정상/고장판별부, 고장원인판별부로 구성된다. 제안한 고장진단과정을 보면, 데이터 취득부에서는 변압기에서 가스성분을 취득한다. 정상/고장 판별부에서는 취득된 가스성분들을 KEPCO 규정과 비교하여 정상/고장 여부를 판단한다. 고장원인 판별부에서는 입력 데이터가 고장으로 판정이 난 경우에 다중-클래스 써포트 백터머신에 의해 고장원인을 판정한다. 제안된 방법은 사례연구를 통해 우수성을 입증하였다.

데이터 기반 이상진단법을 위한 화학공정의 조업모드 판별 (Operation Modes Classification of Chemical Processes for History Data-Based Fault Diagnosis Methods)

  • 이창준;고재욱;이기백
    • Korean Chemical Engineering Research
    • /
    • 제46권2호
    • /
    • pp.383-388
    • /
    • 2008
  • 화학공정의 안전하고 효율적인 운전에 관심이 커지면서 공정이상의 원인을 조기에 진단하기 위한 다양한 이상진단방법이 연구되어 왔다. 최근에는 통계적 모델 등 정량적 데이터에 기반한 이상진단방법이 많이 연구되고 있으나, 특정 조업영역에서 얻어진 통계적 모델을 다른 조업영역에 적용하면 오진단이 많아지게 된다. 따라서 공정특성상 다양한 조업영역이 존재하는 화학공정에 데이터기반 방법론을 적용하기에는 어려움이 있어 화학공정의 조업영역 판별법이 요구되고 있다. 이 연구에서는 유클리드 거리(Euclidean distance), FDA(Fisher's discriminant analysis), PCA(principal component analysis)의 통계모델과 이 모델들에 공정변수의 동특성을 반영한 모델을 제안하였다. 6개의 조업모드를 가진 TE(tennessee eastman) 공정에 대한 사례연구를 통해 동특성을 반영한 PCA 모델의 성능이 가장 우수함을 확인하였다.

유도 전동기의 고장 검출 및 분류를 위한 특징 벡터 추출과 분류기의 다양한 설정에 따른 분류 성능 비교 (Feature Vector Extraction and Classification Performance Comparison According to Various Settings of Classifiers for Fault Detection and Classification of Induction Motor)

  • 강명수;뉘엔 투 낙;김용민;김철홍;김종면
    • 한국음향학회지
    • /
    • 제30권8호
    • /
    • pp.446-460
    • /
    • 2011
  • 최근 항공 산업, 자동차 산업 등의 산업 현장에서 유도 전동기의 사용이 증대되고 있으며, 유도 전동기는 산업 현장에서 중요한 역할을 하고 있다. 따라서 유도 전동기의 고장으로 인한 피해를 최소화하기 위해 유도 전동기의 고장 검출 및 분류 시스템의 개발이 중요한 문제로 대두되고 있다. 이와 같은 이유로 본 논문에서는 유도 전동기의 고장을 조기에 검출하고 진단하기 위해 에너지 (short-time energy)와 특이치 분해와 이산 코사인 변환과 특이치 분해를 이용한 특징 벡터 추출 방법을 제안하였고, 이를 역 전파 신경 회로망과 다층 서포트 벡터 머신의 입력으로 이용하여 유도 전동기의 고장을 유형별로 분류하였다. 하지만 본 논문에서는 역 전파 신경 회로망과 다층 서포트 벡터 머신을 분류기로 사용함에 있어 역 전파 신경 회로망은 신경망을 구성하는 입력 뉴런 수, 은닉 뉴런 수, 학습 알고리즘에 의해 분류 성능이 달라지며, 다층 서포트 벡터 머신은 커널 함수로 사용한 가우시안 방사 기저 함수의 표준 편차 값에 따라 분류 성능이 달라지는 점을 고려하여 여러 가지 조건하에서의 실험을 통해 높은 분류 성능을 보이는 설정 방법을 제시하였다.

잡음 환경에서의 유도 전동기 고장 검출 및 분류를 위한 강인한 특징 벡터 추출에 관한 연구 (A Study on Robust Feature Vector Extraction for Fault Detection and Classification of Induction Motor in Noise Circumstance)

  • 황철희;강명수;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권12호
    • /
    • pp.187-196
    • /
    • 2011
  • 유도 전동기는 항공 산업, 자동차 산업 등의 산업 현장에서 중요한 역할을 하고 있으며, 이러한 유도 전동기의 고장으로 인한 피해를 최소화하기 위해 유도 전동기의 고장 검출 및 분류 시스템의 개발이 중요한 문제로 대두되고 있다. 이에 본 논문에서는 정상 및 각종 비정상 상태의 유도 전동기 진동 신호에 대해 부분 자기 상관(partial autocorrelation, PARCOR) 계수, 로그 스펙트럼 파워(log spectrum powers, LSP), 캡스트럼 계수의 평균값(cepstrum coefficients mean, CCM), 멜 주파수 캡스트럼 계수(mel-frequency cepstrum coefficient, MFCC)의 네 가지 특징 벡터를 신경 회로망의 입력으로 사용하여 유도 전동기의 고장을 검출하고 분류하였다. 고장 분류를 위한 최적의 특징 벡터를 찾기 위해 추출하는 특징의 수를 2에서 20으로 바꾸어 가며 분류 성능을 평가한 결과 CCM을 제외한 나머지의 경우 5~6의 특징만으로 분류 정확도가 거의 100%에 가까운 결과를 보였다. 또한 본 논문에서는 실제 산업 현장에서 진동 신호 취득 시 포함될 수 있는 잡음을 고려하여 취득한 신호에 백색 잡음(white Gaussian noise)을 인위적으로 추가하여 실험한 결과 LSP, PARCOR, MFCC 순으로 잡음 환경에 강인한 특징 벡터임을 확인할 수 있었다.