• Title/Summary/Keyword: fatty acid profiles

Search Result 340, Processing Time 0.029 seconds

Fatty Acid Composition of Serum and Liver in Mice and Sancho(Zanthoxylum schinifolium) Seed Oil (산초유의 지방산 조성과 마우스 혈청 및 간장의 지방산 조성변화)

  • Cha, Jae-Young;Shin, Seung-Ryeul;Cho, Young-Su
    • Food Science and Preservation
    • /
    • v.7 no.3
    • /
    • pp.308-312
    • /
    • 2000
  • The major fatty acids in the Zanthoxylum schinifolium seed oil were eicosenoic acid 30.88%, oleic acid 29.94%, linoleic acid 23.55% and palmitic acid 10.52%. Fatty acid profiles in the each lipid fractions by TLC of the Z. schinifolium seed oil showed the highest composition of eicosenoic acid in triglyceride fraction and oleic acid in other fractions. Mice (ddY male strain) being starved for 24 hr were injected into gastric directly 500 mg of the Z. schinifolium seed oil, and then blood samples were obtained 0, 3 and 6 hr after dosing. In our results, eicosenoic acid appeared to be significantly increased in the serum obtained from 3 and 6 hr after injection of the Z. schinifolium seed oil. In the control mice, however, the serum samples did not exhibited any change of the Z. schinifolium seed oil. Interestingly, eicosenoic acid was significantly increased in the liver of 6 hr mice after injection. In conclusion, eicosenoic acid was the major fatty acid in the Z. schinifolium seed oil, and this fatty acid was significantly increased in the serum obtained 3 and 6 hr after injection in mice.

  • PDF

Characterization of Inorganic Components, Free Sugars, Amino Acids, and Fatty Acids in Angelica gigas Nakai (참당귀의 무기성분, 유리당, 아미노산 및 지방산 함량 특성)

  • Kil, Hyun Young;Seong, Eun Soo;Sim, Jae Man;Choi, Seon Kang;Heo, Kweon;Yu, Chang Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.6
    • /
    • pp.454-459
    • /
    • 2015
  • Background : The major compounds of Angelica species are decursin, decursinol angelate, nodakenin, umbelliferone and ${\beta}$-sitosterol, which act anti-inflammatories, reduce pains, protect the liver and enhance the immune system. This study investigated the chemical compositions, minerals, metals, sugars and overall amino acid composition in Angelica gigas Nakai. Methods and Results : Powder of Angelica roots smaller than 30 mesh were used. Physico-chemical analysis revealed the presence of carbohydrates (62.0%), crude proteins (13.9%), moisture (11.4%), crude fats (7.3%) and ash (5.4%). Results showed that potassium was present in the highest amount (1,859 ppm), followed by magnesium (214.5 ppm), calcium (147.3 ppm) and sodium (6.0 ppm). Free sugar profiles showed the presence of sucrose (29.3 g/100 g). The total amino acids concentrations was 9,752 mg/100 g, the most common and dominant amino acids were arginine (2,181 mg/100 g), glutamic acid (1,212 mg/100 g) and aspartic acid (834 mg/100 g). The total free amino acids contents was 1,476 mg/100 g, in which the most common amino acid were arginine (932 mg/100 g), glutamic acid (127 mg/100 g), and ${\gamma}$-aminobutyric acid (80.4 mg/100 g). The fatty acid composition of A. gigas showed a higher concentration of unsaturated fatty acids such as linoleic acid (443.9 mg/100 g) and palmitic acid (181.3 mg/100 g) according to gas chromatography. Conclusions : These results showed that Angelica roots can be used in various fields of foods and medicines, and in the preparation of cosmetics.

Developmental Relationship of Unsaturated Fatty Acid Composition and Stearoyl-CoA Desaturase mRNA Level in Hanwoo Steers' Muscle

  • Lee, Seung-Hwan;Yoon, Du-Hak;Choi, Nag-Jin;Hwang, Soo-Han;Cheong, Eun-Young;Oh, Sung-Jong;Cheong, Il-Cheong;Lee, Chang-Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.562-566
    • /
    • 2005
  • This study was conducted to investigate the developmental relationship between fatty acid composition in different lipid fractions and stearoyl-CoA desaturase (SCD) gene expression in steer muscles during growth. Twenty Hanwoo steers were used at 6, 12, 18, 24 and 30 months of age. Fatty acid composition and SCD mRNA level were analyzed. In the total lipid fraction, developmental profiles of C18:1, as the product of SCD enzyme, and SCD mRNA level were significantly increased between 6 months and 12 months of age. During this period, the percentage of C18:1 increased from 31.9% to 49.5% in the total lipid. The increased C18:1 level was maintained until 30 months of age within the range of 44.8- 49.9%. In contrast, the C18:0 composition decreased with age and this decrease was compensated by the increase of the C18:1. However, the sum of C18:0 and C18:1 was changed before and after 12-month old by a 20% increase. Unlike the C18 fatty acids, the C16 fatty acids such as C16:0 and C16:1 did not show a consistent change with age in steers' muscle. On the other hand, C18:2 proportion as a major polyunsaturated fatty acid in muscle was significantly reduced from 21.1% at 6 months of age to 4.4% at 12-months old and then this reduced level was maintained until 30 months within the range of 7.4-11.4%. As in the C18:1 composition during early stages, a 2-fold significant increase was observed in the $\Delta^9$-desaturase index of C18 fatty acid as a measure of SCD activity, but not in that of C16 fatty acid. Also, the steady-state level of SCD mRNA reached a peak at 12 months of age. Thus, the positive relationship between the C18:1 composition and the $\Delta^9$-desaturase (SCD enzyme) index of C18 fatty acid or SCD mRNA level was demonstrated during growth, but the negative relationship between the C18:2 composition and the above three indices was demonstrated at the same time, indicating that the sharp induction of SCD mRNA may be closely related to the dramatic reduction of C18:2, which is known as a suppressor of SCD gene expression during growth.

Physicochemical Characters of Ultra Violet Ray Resistant Deinococcus sp. Isolated from Air Dust

  • Nalae, Yun;Lee, In-Jeong;Lee, Young-Nam
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.483-487
    • /
    • 1992
  • Among a few number of UV-resistant isolated form various environmental sources (10), we made a comparative physio-chemoanalytical study on one of spherical bacteria isolated from air dust, presumably Deinococcus sp. (CM strain 29) with an UV resistant bacterium, Deinococcus radiophilus ATCC 27603 as the reference strain. Our isolate of UV resistant coccus, Deinococcus sp. CM 29 and D. radiophilus ATCC 27603 showed more than 75% matching coefficient in metabolic activity of various substrates. The most predominant cellular fatty acid of both strains was palmitoleic acid (C 16 :1, cis 9), but the detail fatty acid profiles were slightly dissimilar to each other. Cell-bound arange pigment seemed to be an identical chemicals on spectrophotometric analysis. L-ornithine was detected as cell-wall amino acid in both strains. Galactose was detected as cell-wall sugar in D. radiophilus ATCC 27603, whereas glucose in Deinococcus sp. CM 29. G-C molar ratio of both strains was comparable, 63-65%.

  • PDF

Effects of Protected Conjugated Linoleic Acid Supplementation on Milk Fatty Acid in Dairy Cows

  • Piamphon, N.;Wachirapakorn, Chalong;Wanapat, M.;Navanukraw, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.49-56
    • /
    • 2009
  • The objective was to determine the effects of supplementation of protected conjugated linoleic acid (CLA), CLA-20 comprising 10% each of cis-9, trans-11 and trans-10, cis-12, on milk production and fatty acid profiles in plasma and milk in lactating dairy cows. Five mid-lactation, multiparous crossbred Holstein Friesian cows with average 402${\pm}$20 kg BW were used in a 5${\times}$5 Latin square design for 21-d periods. Cows were given a total mixed ration (TMR) and supplemented with CLA-20 at 0, 20, 40, 80 and 160 g/d. The results showed that dry matter intake depression occurred in cows supplemented with CLA-20 at 160 g/d. Milk production slightly increased when CLA-20 supplementation was at 20, 40 and 80 g/d. However, 3.5% fat-corrected milk (FCM) was not affected by CLA-20 supplementation. Increased levels of CLA-20 supplementation resulted in a significantly decreased percentage of milk fat. Plasma concentrations of fatty acid were not altered by the amounts of CLA-20 supplementation except for the concentration of trans-10, cis-12 CLA. For all dietary treatments, percentages of fatty acids (C4:0, C6:0, C8:0, C13:0, C14:0 C14:1 C15:0 C15:1 C16:0, C16:1, C18:1n9t, C18:2n6t, C18:2n6c, C20:0, C18:3n6, C18:3n3, C20:1 and C20:3n6) in milk fat were similar. Concentrations of C10:0, C11:0, C12:0 and C18:1n9c were decreased cubically and C18:0 was elevated linearly (p<0.01) according to the increased amounts of CLA-20 supplemented. The linear increase was observed for cis-9, trans-11 CLA (0.62, 1.17, 1.94, 1.87 and 1.82% of total fatty acid), trans-10, cis-12 CLA (0.01, 0.63, 0.67, 0.93 and 0.95% of total fatty acid) and total CLA (0.80, 2.25, 3.16, 3.97 and 3.94% of total fatty acid) in milk fat from 0 to 160 g/d of CLA-20 supplement. In conclusion, concentration of cis-9, trans-11 CLA in milk fat was concomitantly elevated at an increasing rate with the increased amounts of CLA-20. Based on the results in this study, supplementation of CLA-20 at 80 g/d optimally enhanced total CLA in milk fat.

Quality Characteristics of Korean Native Pigs Slaughtered at Commercial Market Weight

  • Ryou, H.G.;Hah, K.H.;Park, K.H.;Ha, G.H.;Kang, S.M.;Jin, S.K.;Kim, I.S.
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2005.05a
    • /
    • pp.159-163
    • /
    • 2005
  • Ninety KNP were divided into three group by differential market weight(20 of each group): Live weight of Group 1(G 1), Group 2(G 2) and Group 3(G 3) were 50-59kg, 60-69kg, 70-80kg, respectively. Values of pH and shear force showed an increase, while cooking loss showed decreased with increased weight. In color analysis, $a^{\ast}$ value in meat and $b^{\ast}$ value in backfat of KNP showed higher as slaughter weight increased. Slaughter weight did not significantly affect the fatty acid composition of subcutaneous fat of KNP. With the exception of oleic acid in intermuscular fat, there were no significant weight-dependent differences in the fatty acid profiles.

  • PDF

Studies on Lipid Intake, Serum Lipid Profiles and Serum Fatty Acid Composition in College Women Who Smoke (흡연여대생의 지질섭취와 혈중지질 및 지방산 조성에 관한 연구)

  • 안홍석;이금주;김나영
    • Korean Journal of Community Nutrition
    • /
    • v.7 no.1
    • /
    • pp.102-110
    • /
    • 2002
  • Cigarette smoking has long been recognized as a major risk factor in the development of coronary heart disease. Several investigators have reported the strong association between smoking and high serum cholesterol, triglyceride concentration, SFA and low HDL cholesterol, PUFA and $\omega$6 concentrations. Therefore, this study was done to investigate the effect of smoking on the serum lipid profile and fatty acid composition of college women. Sixty-one non-smokers and twenty-seven smokers were selected from college women students in the Seoul area. Their lipid intake, serum lipid concentration and fatty acid composition were examined. There were no differences in the general characteristics and anthropometric indices between the smokers and non-smokers. However, alcohol consumption was significantly higher in smokers than non-smokers (p<0.001). The daily caloric intake of smokers and non-smokers were 1875.84 kcal and 1915.53 kacl, respectively. On the other hand, the mean daily intake of lipids and cholesterol were significantly lower in smokers (p<0.05). In smokers, the mean concentrations of serum total cholesterol, LDL-cholesterol and the LDL-C/HDL-C ratio were higher, and the compositions of EPA and DHA were lowe than in non-smokers. There was a negative correlation between the serum triglyceride and PUFA levels in the two groups. Also, serum HDL-C correlated negatively with MUFA in smokers and non-smokers (p<0.01). These results suggest that smoking cause inadequate changes in serum lipid profile and serum fatty acid composition, thereby increasing the tendency for coronary heart disease.

Effects of Dietary n-3/n-6 Fatty Acid Ratio on In Vitro Fermentation Characteristics and Fatty Acid Profiles

  • Kim, Dong-Hyeon;Amanullah, Sadar M.;Yoon, Hee;Lee, Hyuk-Jun;Kong, Il-Keun;Kim, Sam-Churl;Cho, Kyu-Woan;Kim, Sang-Bum
    • Journal of agriculture & life science
    • /
    • v.46 no.3
    • /
    • pp.79-85
    • /
    • 2012
  • This study was conducted to examine the effect of dietary n-3/n-6 fatty acid (FA) ratio on in vitro dry matter digestibility (IVDMD), fermentation indices and FA profile. Rice bran was mixed with oil sources (cotton seed oil and linseed oil) to make the diets at 0.02, 0.29 and 0.61 of dietary n-3/n-6 FA ratio. These diets (0.5g) were placed into the incubation bottles with 40 ml of anaerobic culture medium, which contained rumen fluid and Van Soest medium at 1:2 ratio. Five replicates of each diet and two blanks were incubated at $39^{\circ}C$ for 48 hours. After incubation, the incubated contents were centrifuged. The residues were freeze-dried for DMD and FA analyses. The supernatant was used for pH, $NH_3-N$ and volatile fatty acid analyses. The concentrations of lactate (p<0.001) and iso-valerate (p<0.001) decreased linearly with increasing dietary n-3/n-6 FA ratio, but acetate concentration (p=0.056) and the ratio of acetate to propionate (p=0.005) was increased linearly. The concentrations of n-3, n-6 FA and the ratio of n-3/n-6 FA in residues increased (p<0.001) linearly with increasing dietary n-3/n-6 FA ratio, but C18:1n-9 FA concentration was decreased (p<0.001) linearly. With these results, it could affect fermentation characteristics and FA profile of rumen content by dietary n-3/n-6 FA ratio.

Dietary supplementation of finishing pigs with the docosahexaenoic acid-rich microalgae, Aurantiochytrium limacinum: effects on performance, carcass characteristics and tissue fatty acid profile

  • Moran, Colm A.;Morlacchini, Mauro;Keegan, Jason D.;Fusconi, Giorgio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.712-720
    • /
    • 2018
  • Objective: The aim of this experiment was to evaluate the effect of dietary supplementation with the docosahexaenoic acid (DHA)-rich microalgae, Aurantiochytrium limacinum (AURA) on pig performance, carcass traits, and the fatty acid composition of pork Longissimus lumborum (LL) and backfat. Methods: A total of 144 Pig Improvement Company (PIC)${\times}$Goland finishing pigs (72 females and 72 castrated males) of mean weight 117.1 (${\pm}13.1$) kg were blocked by sex and body weight and provided with 0% or 1% AURA in isonutritive and isocaloric diets. A total of 24 pens provided 12 replicates per treatment. Animals were weighed on day 0 and 28 with feed and water intake recorded per pen. After 31 days supplementation (28 days of study and 3 days until the slaughtering date) three animals per pen (n = 72) were slaughtered and the LL and backfat thickness, lean meat content and dressing percentage were recorded for the carcasses. The fatty acid (FA) profile of the LL and backfat was established by direct FA methyl ester synthesis. Results: No differences were observed for any performance parameters or carcass traits. Supplementation with AURA resulted in significant changes to the FA profiles of both the LL and backfat with male and female pigs responding differently to supplementation in terms of particular FAs. Overall, pork LL samples had significantly higher eicosapentaenoic acid (p<0.001) and DHA concentrations (p<0.001), and higher omega-3 (n-3) FAs (p<0.001), as well as an increased omega3:omega6 (n-3:n-6) ratio (p = 0.001). For backfat, supplementation resulted in significantly higher amounts of DHA (p<0.001) and n-3 FAs (p<0.001). Conclusion: These results indicate that dietary supplementation with 1% AURA over a 31 day period can increase the FA composition of pork LL and backfat, specifically the DHA, with no major impact on growth performance and carcass traits.

Anti-Inflammatory Effect of Asterias amurensis Fatty Acids through NF-κB and MAPK Pathways against LPS-Stimulated RAW264.7 Cells

  • Monmai, Chaiwat;Go, Seok Hyeon;Shin, Il-sik;You, SangGuan;Kim, Dae-ok;Kang, SeokBeom;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1635-1644
    • /
    • 2018
  • Asterias amurensis (starfish) is a marine organism that is harmful to the fishing industry, but is also a potential source of functional materials. The present study was conducted to analyze the profiles of fatty acids extracted from A. amurensis tissues and their anti-inflammatory effects on RAW264.7 macrophage cells. In different tissues, the component ratios of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids differed; particularly, polyunsaturated fatty acids such as dihomo-gamma-linolenic acid (20:3n-6) and eicosapentaenoic acid (20:5n-3) were considerably different. In lipopolysaccharide-stimulated RAW264.7 cells, fatty acids from A. amurensis skin, gonads, and digestive glands exhibited anti-inflammatory activities by reducing nitric oxide production and inducing nitric oxide synthase gene expression. Asterias amurensis fatty acids effectively suppressed the expression of inflammatory cytokines such as tumor necrosis $factor-{\alpha}$, interleukin-$1{\beta}$, and interleukin-6 in lipopolysaccharide-stimulated cells. Cyclooxygenase-2 and prostaglandin $E_2$, which are critical inflammation biomarkers, were also significantly suppressed. Furthermore, A. amurensis fatty acids reduced the phosphorylation of nuclear $factor-{\kappa}B$ p-65, p38, extracellular signal-related kinase 1/2, and c-Jun N-terminal kinase, indicating that these fatty acids ameliorated inflammation through the nuclear $factor-{\kappa}B$ and mitogen-activated protein kinase pathways. These results provide insight into the anti-inflammatory mechanism of A. amurensis fatty acids on immune cells and suggest that the species is a potential source of anti-inflammatory molecules.