• Title/Summary/Keyword: fatigue of concrete

Search Result 475, Processing Time 0.027 seconds

Fatigue Performance of Precast FRP-Concrete Composite Deck with Long Span (장지간 프리캐스트 FRP-콘크리트 합성 바닥판의 피로 성능)

  • Cho, Keun-Hee;Park, Sung-Yong;Kim, Sung-Tae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.45-46
    • /
    • 2010
  • Fatigue performance of a precast FRP-concrete composite deck with long span economically applicable to a cable-stayed bridge was evaluated. From the experiment, it is verified that the precast FRP-concrete composite deck has sufficient fatigue performance.

  • PDF

Fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete composite beams

  • Han, Qing-Hua;Wang, Yi-Hong;Xu, Jie;Xing, Ying
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.353-368
    • /
    • 2016
  • This paper extends our recent work on the fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete (RRFC) composite beams. A series of 16 fatigue push-out tests were conducted using a hydraulic servo testing machine. Three different recycled tyre rubber contents of concrete, 0%, 5% and 10%, were adopted as main variable parameters. Stress amplitudes and the diameters of studs were also taken into consideration in the tests. The results show that the fatigue lives of studs in 5% and 10% RRFC were 1.6 and 2.0 times greater of those in normal concrete, respectively. At the same time, the ultimate residual slips' values of stud increased in RRFC to highlight its better ductility. The average ultimate residual slip value of the studs was found to be equal to a quarter of studs' diameter. It had also been proved that stress amplitude was inversely proportional to the fatigue life of studs. Moreover, the fatigue lives of studs with large diameter were slightly shorter than those of smaller ones and using larger ones had the risk of tearing off the base metal. Finally, the comparison between test results and three national codes was discussed.

Degradation of roller compacted concrete subjected to low-velocity fatigue impacts and salt spray cycles

  • Gao, Longxin;Lai, Yong;Zhang, Huigui;Zhang, Jingsong;Zhang, Wuman
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.411-418
    • /
    • 2021
  • Roller compacted concrete (RCC) used in the island reef airport runway will be subjected to the coupling actions of the fatigue impacts and the salt spray cycles, which will accelerate the deterioration of runway concrete and even threaten the flight safety. A cyclic impact testing machine and a climatic chamber were used to simulate the low-velocity fatigue impact and the salt spray cycles, respectively. The physical properties, the microstructures and the porosity of RCC were investigated. The results show the flexural strength firstly increases and then decreases with the increase of the fatigue impacts and the salt spray cycles. However, the decrease in the flexural strength is significantly earlier than the compressive strength of RCC only subjected to the salt spray cycles. The chlorine, sulfur and magnesium elements significantly increase in the pores of RCC subjected to 30000 fatigue impacts and 300 salt spray cycles, which causes the decrease in the porosity of RCC. The coupling effects of the fatigue impacts and the salt spray cycles in the later period accelerates the deterioration of RCC.

Study on Fatigue Life of Continuously Reinforced Concrete Pavement with Design Parameter (설계변수별 연속철근 콘크리트 포장의 피로수명 연구)

  • Park, Jong-Sup;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.1-10
    • /
    • 2007
  • A laboratory investigation is conducted to characterize and quantify fatigue lives of continuously reinforced concrete pavements (CRCP) with initial design parameters. Eight specimens scaled were made based on results of finite-element analyses and stress-strain curve comparisons. Static tests were firstly performed to obtain magnitudes of static failure loads and to predict crack patterns before fatigue tests. The fatigue lives measured in the study were compared based on each initial design parameter. The comparison indicates that the fatigue lives of CRCP specimens with initial cracks increases with increasing the initial crack spacing, and CRCP specimens with reinforcements at top of the concrete slab have more fatigue lives than those with reinforcements at midheight of the concrete slab. In addition, the fatigue lives were significantly affected by soil conditions under the CRCP specimens. The results obtained in the study can be used for maintenance and retrofit of the continuously reinforced concrete pavements.

The Fatigue behavior of strengthened bridge deck with Carbon Fiber Rod (탄소섬유 Rod로 성능향상된 교량 바닥판의 피로거동)

  • 심종성;김민수;김영호;주민관
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.313-318
    • /
    • 2002
  • The use of carbon fiber rods is a promising technology of increasing flexural and shear strength of deficient reinforced concrete members. The purpose of this experimental study is to investigate the fatigue behavior and strengthening effects of the strengthened bridge deck with isotropic and othortropic carbon fiber rod. This study shows a fatigue loading, compliance and S-N Curve between strengthened isotropically and othortropically. Then estimate the effective fatigue behavior of RC slab using composite rods that are inserted in high special purposed polymer mortar.

  • PDF

The Prediction of Fatigue Behavior using Cyclic Creep Concept of R/C Beam Strengthened with Steel Plate and Carbon Fiber Sheet (강판 및 탄소섬유 sheet로 보강된 R/C보의 반복크리프 개념을 적용한 피로거동예측)

  • 심종성;문도영;박경동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.555-560
    • /
    • 2003
  • Fatigue strength of concrete is ususlly presented by the Wohler Curve. But, new dimension T(time) from the view point of cyclic creep concept should be considerd. This paper presented four variable F-N-T-R relationship, this four variable relationship simultaneously accounts for the time effect and the effect of load rate. And analytical models are presented to predict fatigue strength of R/C beam strengthened with steel plate and carbon fiber sheet. Also, the correlation between the ratio of stress and the fatigue life was investigated.

  • PDF

Fatigue Behavior of Reinforce Concrete Beams with Recycled Aggregate (골재 종류에 따른 철근 콘크리트 보의 피로거동 특성)

  • Ji, Sang-Kyu;Jeon, Esther;Kim, Sun-Woo;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.82-85
    • /
    • 2006
  • In this study, the fatigue tests were performed on a series of reinforce concrete beams with type of aggregate to investigate the fatigue behavior. The four point loading system is used in the fatigue tests. In these tests, relations between the repeated loading cycles and mid-span deflections, number of repeated loading cycles when specimen was fractured were observed. On this basis, the mid-span deflections, the crack growth and failure mode of beams were studied. The result of tests, reinforce concrete beams with recycled aggregate were about similar failure mode with natural aggregate concrete beam.

  • PDF

Fatigue Behavior of Steel Fiber Reinforced Concrete Continuous Beams under Cyclic Loading (반복하중하에서 강섬유보강 철근콘크리트 연속보의 피로거동)

  • Kwak, Kae-Hwan;Park, Jong-Gun;Jang, Hwa-Sup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.47-58
    • /
    • 2004
  • As concrete structures are getting larger, higher, longer and more specialized, it is more required to develop steel fiber concrete and apply to the real world. In this research, it is aimed to have fatigue strength examined, varying the steel fiber content of 0%, 0.75%, 1.00%, 1.25% by experimental study of fatigue behavior of the steel fiber reinforced concrete continuous beams under cyclic loading. The ultimate load and initial load of flexural cracking were measured by static test. In addition, the load versus strain relation, load versus deflection relation, crack pattern and fracture mode by increasing weight were observed. On the other hand, the crack propagation and the modes of fracture according to cycle number and the relation of cyclic loading to deflection relation and strain relation were investigated by fatigue test. As the result of fatigue test, continuous beam without steel fiber was failed at 60 ~ 70% of The static ultimate strength and it could be concluded that fatigue strength to two million cyclic loading was arround 67.2% by S-N curve. On the other hand, that with steel fiber was failed at 65 ~ 85% of the static ultimate strength and it could be concluded fatigue strength to two million cyclic loading around 71.7%.

A Laborratory Study of the Fatigue and Development of Analysis Program of Concrete Pavements (시멘트 콘크리트 포장의 피로실험과 프로그램 작성)

  • 엄주용;임승욱;윤기용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.232-240
    • /
    • 1996
  • In the present study, a series of static load test and fatigue test were carried out to investigate the behavior of the CRCP. The specimens were sized to 25% of real one lane CRCP. The fatigue tests were carried out for the repetitive load as much as 16%, 39%, 40%, 48%, 59% and 78% of the max. static load for the center or corner loading. Compared the field test with laboratory test for FWD, it is an equpment useful to maintance and manage of the concrete pavements.

  • PDF

A Study on the Fatigue Characteristics to Improve the Eng Bond Properties of Strengthening Concrete Beam (단부 부착력 개선을 위한 보강콘크리트보의 피로특성에 관한 연구)

  • 한만엽;이영헌;이성준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.721-724
    • /
    • 1999
  • The concrete structure under fatigue load depresses in mechanical capability or breaks down finally because of the fatigue. So recently the study on strengthening methods using bonded plate is widely attended. Which could be constructed under use and without damaging the structure. The intention of this method is to increase the useability of the structure and to recover the strength. So application on fields are sharply increasing. In this study it is tried to develop strengthening methods using notches and anchor bolts which could supply the defect on falling off of the plate at the end.

  • PDF