• Title/Summary/Keyword: fatigue of concrete

Search Result 475, Processing Time 0.025 seconds

A Study on Transferred Load Reduction on Paved Track Roadbed with Low Elastic Base Plate Pad (저탄성 베이스플레이트 패드 적용에 따른 포장궤도 노반에서의 전달하중 저감에 관한 연구)

  • Lee, Il-Wha;Kang, Yun-Suk;Lee, Hee-Up
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.399-405
    • /
    • 2008
  • Development of the paved track is required as a low-maintenance of conventional line. The paved tracks are one of the types of the ballast reinforced tracks those are manufactured by adopting the prepacked concrete technique. The main elements of this tracks are large sleeper, low elastic pad, fastener, cement mortar, geotextile and recycled ballast. Low elastic pad is the most effective element of such tracks on the basis of stress-displacement characteristics, dynamic response and fatigue characteristics. The stiffness of the pad determine the stiffness of the track. Consequently, it is more important in case of concrete track structure such as paved track because application of low elastic pad seriously effect the durability and stability of the track. The main objective of this study is to confirm the reduction of train load, which transfer to roadbed through various pad effects. To achieve this task static, numerical analysis and real scale repeated loading test was performed while load reduction effect of low elastic pad was analyzed by using displacement, stress and strain ratio characteristics of the paved track.

An Experimental Study on the Application of Fireproof Panel in Tunnel Duct Slab (터널 풍도슬라브에 사용된 내화패널의 적용성에 관한 실험연구)

  • Woo Jin Choi
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.262-269
    • /
    • 2023
  • Purpose: In this study,fire-resistance test were executed to evaluate the effectiveness of the fireproof panel attached to the PSC slab in tunnel. Method: For the fire resistance test, the RWS curve was applied and the furnace of the KICT was used. Result: As a result of the experiment, the maximum temperature measured on the concrete surface of the PSC slab with the fireproof panel was 321.8℃, which was lower than the damage limit temperature of 380℃ for concrete. Also, at the t=25mm, the maximum temperature was 35.2℃, which was lower than the damage temperature of steel, 250℃. The use of precast fire resistance panel(t=30mm) improves fire resistance of PSC structures. Conclusion: As a result of the test, a reinforcement method for attached a fireproof panel in case of fire in a tunnel or an underground roadway is provided to protect a structure from fire. In the future, it is necessary to perform the static performance test of the slab to which the fireproof panel is attached, and to confirm the adhesion performance of the fireproof panel by performing the pull-off test and the fatigue test.

Behavior of Tension Clamp in Rail Fastening System (레일 체결장치 텐션클램프의 거동)

  • Choi, Shin-Hyung;Park, Beom-Ho;Yun, Kyung-Min;Bae, Hyun-Ung;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8812-8819
    • /
    • 2015
  • In a situation in which importance of rail fastening system is growing with increasing the construction of concrete track, an accident of tension clamp(the component of rail fastening system) breaking has been recently occurred. This results from various factors such as field condition, operating agency, running condition, traffic frequency and so on. Thus, the study for the behavior of tension clamp is required. In this paper, an experiment and finite element analysis(FEA) have been performed to analyse the mechanical behavior of tension clamp. The stress and displacement of tension clamp have been analyzed as the clamping force through a laboratory test, and they were compared with FEA results. Furthermore, the stress and displacement of the tension clamp are derived from train load condition applying the verified model, and the fatigue vulnerability of the tension clamp is identified through stress analysis.

A study on the fire resistance characteristics of mud flat mortar (갯벌모르타르의 내화성능에 관한 실험적 연구)

  • Yang, Seonghwan;Kim, Huidoo
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.589-596
    • /
    • 2015
  • As urbanization progressed along with quantitative expansion of the construction industry, concrete has developed diversely as a material that is the most extensively used in the construction industry. However, aggregate resources that are an essential element of concrete production are gradually being depleted and the phenomenon of aggregate shortage has been intensifying due to the reinforcement of regulations on environmental issues. Therefore, in the present study, environment friendly mortar was made by replacing aggregate with mud that is dumped when dredging sand is dumped. To identify the dynamic characteristics of the mortar and to identify its fire resistance efficiency, the mortar was heated and its residual compressive strength was measured. In the results, the residual compressive strength values of MM1, MM2, and MM3 were 45%, 95%, and 57.7% respectively and the mix MM2 showed the highest fire resistance efficiency.

Analysis of Acoustic Emission Signals during Long-Term Strength Tests of Brittle Materials (취성재료의 장기 강도시험 중 미소파괴음 신호 분석)

  • Cheon, Dae-Sung;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.121-131
    • /
    • 2017
  • We studied the time-dependent behaviors of rock and concrete materials by conducting the static and dynamic long-term strength tests. In particular, acoustic emission(AE) signals generated while the tests were analyzed and used for the long-term stability evaluation. In the static subcritical crack growth test, the long-term behavior and AE characteristics of Mode I and Mode II were investigated. In the dynamic long-term strength test, the fatigue limit and characteristics of generation of AE were analyzed through cyclic four points bending test. The graph of the cumulative AE hits versus time showed a shape similar to that of the creep curve with the first, second and third stages. The possibility for evaluating the static and dynamic long-term stability of rock and concrete is presented from the log - log relationship between the slope of the secondary stage of cumulative AE hits curve and the delayed failure time.

Effect of Surface Profiles on Pavement Fatigue Life (포장 프로파일이 포장 피로수명에 미치는 영향 분석)

  • Park, Dae-Wook;An, Deok-Soon;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.167-174
    • /
    • 2009
  • The simulation of dynamic load was conducted based on surface profile on asphalt concrete pavement, vehicle speeds, and suspension types using a truck simulation program. The results of the simulated dynamic load based on different surface profile, vehicle speeds, and suspension types are analyzed. As pavement roughness and vehicle speed are increased, the dynamic load was increased. Walking beam suspension produces greater dynamic load than air spring suspension. Pavement damage index is calculated based on covariance of dynamic load and Paris-Erdogan fracture parameter, n which is based on creep compliance tests of asphalt mixtures used in Korea. The higher covariance of dynamic load, confidence level, and fracture parameter are used, the greater pavement damage index is obtained. Specification of pavement roughness can be developed in various vehicle speeds and asphalt mixtures, and pay factor can be determined after constructing asphalt concrete pavement using pavement damage concepts.

  • PDF

Comparison of Geogrid Bonding Methods under Asphalt Overlay Layer for Reflection Cracking Retardation (아스팔트 덧씌우기 하부의 Geogrid 부착방법에 따른 반사균열 지연특성 비교)

  • Doh, Young-Soo;Kim, Bun-Chang;Ko, Tae-Young;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.9-20
    • /
    • 2005
  • This study was carried out to select most efficient bonding methods of geogrid at the interface of old concrete pavement before placing asphalt overlay layer for reflection cracking retardation. Three bonding methods, a RSC-4 emulsified asphalt, a compound and an unsaturated polyester resin (UPR) were compared in this study. Three types of asphalt mixture (AC 60-80, RLDPE 8%, PG 76-22) and a dense-graded aggregate were used for overlay asphalt pavement. A reinforcing material which consists of a woven fabric underneath a glass fiber grid was used. An expedite test method which is for simulating mixed mode (mode I and II) fracture test was performed using a wheel tracker in laboratory. Cracking development by load repetition was measured as fatigue life (number of load cycle) and expansion of specimen body were measured for each test specimen. The results showed that UPR was the best and RSC-4 the next. But considering field applicability, RSC-4 was considered as an appropriate choice for bonding reinforcing material.

  • PDF

Parameter Study for the Application of Ultra Thin Polymer Concrete Pavement (초박층 폴리머콘크리트 포장적용을 위한 매개변수 해석)

  • Yoon, Sang il;Jang, Yong joon;Choi, Jinwoong;Hong, Sungnam;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.46-54
    • /
    • 2015
  • Base on Korean design code, previous design code had not considered the effect of pavement on the orthotropic steel deck, however recent design code (Limit State Design Method, 2012) allowed to consider the effect of pavement on the orthotropic steel deck, and efforts to apply the stiffness of pavement to the deck continue. Meanwhile, research on the effect of ultra thin bridge deck overlay on the orthotropic steel deck is inadequate, previous study was limited in about fatigue stress and performance between pavement layer and the orthotropic steel deck. In this study, according to changing of pavement layer stiffness application, pavement materials, pavement thickness and steel deck thickness, analysis of deflection. In addition to base on this result, consider effectiveness of ultra-thin pavement stiffness application on the orthotropic steel deck.

Performance Evaluation Method for Facility Inspection and Diagnostic Technologies (첨단기술을 활용한 시설물 점검 및 진단 기술 검·인증을 위한 성능평가 방법론)

  • Lee, Young-Ho;Bae, Sung-Jae;Jung, Wook;Cho, Jae-Yong;Hong, Sung-Ho;Nam, Woo-Suk;Kim, Young-Min;Kim, Jung-Yeol
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.178-191
    • /
    • 2020
  • Purpose: This paper proposes a performance evaluation method for state-of-the-art facility inspection/diagnostic equipment through a trend survey of equipment and standardization systems of US, Japan, and Korea. This paper also suggests the priority of developing a performance evaluation method through expert interviews and surveys. Method: In this study, report for the last 5 years of FMS, state-of-the-art equipment of facility maintenance companies/safety diagnosis specialist agencies and papers/research reports/patents of NTIS were analyzed to identify recent trends of facility inspection/diagnostic equipment usages. standardization system of US, Japan, and Korea were analyzed to figure out a suitable form of a performance evaluation method for the domestic situation. And expert interview and survey were conducted to identify the priority of developing a performance evaluation method. Result: The performance evaluation method must be developed by the shape that only evaluates performance, regardless of types of equipment, on inspection item level for creative technology development. The priority of developing the performance evaluation method was identified as crack detection of concrete for durability evaluation and displacement/deformation/fatigue detection of concrete and steel for stability evaluation. Conclusion: The performance evaluation method will be developed firstly for the crack detection of concrete for durability evaluation and displacement/deformation/fatigue detection of concrete/steel for stability evaluation. In order to promote creative technology development, the performance evaluation method should be developed in a form that provides standardized specimens or testbeds and can be applied regardless of types of technologies.

Distributed crack sensors featuring unique memory capability for post-earthquake condition assessment of RC structures

  • Chen, Genda;McDaniel, Ryan;Sun, Shishuang;Pommerenke, David;Drewniak, James
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.141-158
    • /
    • 2005
  • A new design of distributed crack sensors based on the topological change of transmission line cables is presented for the condition assessment of reinforced concrete (RC) structures during and immediately after an earthquake event. This study is primarily focused on the performance of cable sensors under dynamic loading, particularly a feature that allows for some "memory" of the crack history of an RC member. This feature enables the post-earthquake condition assessment of structural members such as RC columns, in which the earthquake-induced cracks are closed immediately after an earthquake event due to gravity loads, and are visually undetectable. Factors affecting the onset of the feature were investigated experimentally with small-scale RC beams under cyclic loading. Test results indicated that both crack width and the number of loading cycles were instrumental in the onset of the memory feature of cable sensors. Practical issues related to dynamic acquisition with the sensors are discussed. The sensors were proven to be fatigue resistant from shake table tests of RC columns. The sensors continued to show useful performance after the columns can no longer support additional loads.