• Title/Summary/Keyword: fatigue of concrete

Search Result 475, Processing Time 0.024 seconds

Reliability Assessment of Reinforced Concrete Beams Strengthened by CFRP Laminates (CFRP 적층판으로 보강된 철근콘크리트보의 신뢰성평가)

  • 조효남;최영민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.160-166
    • /
    • 1994
  • In general, the problems of strengthening and repairing of deteriorated or damaged reinforced concrete members are usually worked out in situ by externally bounding steel plates using epoxy resins, which has been recognized to be one of effective and convenient methods. But the disadvantages of strengthening/repairing concrete members with externally bonded steel plates include ; (a) deterioration of the bond at the steel-concrete interface caused by the corrosion of steel ; (b) difficulty in manipulating the plate at the construction site ; (c) improper formation of joints, due to the limited delivery lengths of the steel plates ; and etc. Therefore these difficulties eventually have led to the concept of replacing the steel plates by fiber-reinforced composite sheets which are characterized by their light weight, extremely high stiffness, excellent fatigue properties, and outstanding corrosion resistance. In the paper, for the reliability assessment of reinforced concrete beams externally strengthened by carbon fiber plastic(CFRP) laminates, an attempt is made to suggest a limit state model based on the strain compatibility method and the concept of fracture mechanics. And the reliability of the proposed models is evaluated by using the AFOSM method. The load carrying capacity of the deteriorated and/or damaged RC beams is considerably increased. Thus, it may be stated that the post-strengthening of concrete beams with externally bonded CFRP materials may be one of very effective way of increasing the load carrying capacity and stiffeness characteristics of existing structures.

  • PDF

Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs

  • Wang, Jiajia;Chen, Xudong;Bu, Jingwu;Guo, Shengshan
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.283-293
    • /
    • 2019
  • The limited availability of raw materials and increasing service demands for pavements pose a unique challenge in terms of pavement design and concrete material selection. The self-compacting rubberized concrete (SCRC) can be used in pavement design. The SCRC pavement slab has advantages of excellent toughness, anti-fatigue and convenient construction. On the premise of satisfying the strength, the SCRC can increase the ductility of pavement slab. The aim of this investigation is proposing a new method to predict the crack growth and flexural capacity of large-scale SCRC slabs. The mechanical properties of SCRC are obtained from experiments on small-scale SCRC specimens. With the increasing of the specimen depth, the bearing capacity of SCRC beams decreases at the same initial crack-depth ratio. By constructing extended finite element method (XFEM) models, crack growth and flexural capacity of large-scale SCRC slabs with different fracture types and force conditions can be predicted. Considering the diversity of fracture types and force conditions of the concrete pavement slab, the corresponding test was used to verify the reliability of the prediction model. The crack growth and flexural capacity of SCRC slabs can be obtained from XFEM models. It is convenient to conduct the experiment and can save cost.

Impact-Response of Floor Construction Materials (바닥건축재료의 충결하중에 대한 반응)

  • Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.83-87
    • /
    • 1995
  • Impact-bouncing height of steel balls dropped from 1m height on various floor materials were measured to evaluate impact-bouncing characteristics depending on floor materials and the effect of these properties on walkability and fatigue of humanbody. Stone and tile finished concrete floor showed the highest bouncing height of around 70%, and soil showed the lowest bouncing height of around 3%. The second highest bouncing height was about 40% which corresponded to terazo finished concrete floor and about twice as high as the bouncing height on concrete floor without finishing. The impact-bouncing height could be lowered to 15~20% by using gum tile on concrete floor. Steel showed similar bouncing height to concrete floor, and wood-based materials showed the second lowest bouncing height next to soil. Among wood-based materials, hardwood species having higher specific gravities showed relatively high bouncing height of 8~24%, softwood species having low specific gravities showed relatively lower bouncing height of 5~18%, and wood composites showed bouncing height of 8~18%. Among all the materials used in this study, wood-based floor materials corresponded to the bouncing height of 10~15% which is considered to be best for humanbody. Surface painting on wood-based materials increased the bouncing height, and the number of bouncing of steel balls after dropping from 1m height increased as the bouncing height increased.

  • PDF

Strength estimation for FRP wrapped reinforced concrete columns

  • Cheng, Hsiao-Lin;Sotelino, Elisa D.;Chen, Wai-Fah
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.1-20
    • /
    • 2002
  • Fiber-Reinforced Plastics (FRP) have received significant attention for use in civil infrastructure due to their unique properties, such as the high strength-to-weight ratio and stiffness-to-weight ratio, corrosion and fatigue resistance, and tailorability. It is well known that FRP wraps increase the load-carrying capacity and the ductility of reinforced concrete columns. A number of researchers have explored their use for seismic components. The application of concern in the present research is on the use of FRP for corrosion protection of reinforced concrete columns, which is very important in cold-weather and coastal regions. More specifically, this work is intended to give practicing engineers with a more practical procedure for estimating the strength of a deficient column rehabilitated using FRP wrapped columns than those currently available. To achieve this goal, a stress-strain model for FRP wrapped concrete is proposed, which is subsequently used in the development of the moment-curvature relations for FRP wrapped reinforced concrete column sections. A comparison of the proposed stress-strain model to the test results shows good agreement. It has also been found that based on the moment-curvature relations, the balanced moment is no longer a critical moment in the interaction diagram. Besides, the enhancement in the loading capacity in terms of the interaction diagram due to the confinement provided by FRP wraps is also confirmed in this work.

Applications of fiber optic sensors for structural health monitoring

  • Kesavan, K.;Ravisankar, K.;Parivallal, S.;Sreeshylam, P.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.355-368
    • /
    • 2005
  • Large and complex structures are being built now-a-days and, they are required to be functional even under extreme loading and environmental conditions. In order to meet the safety and maintenance demands, there is a need to build sensors integrated structural system, which can sense and provide necessary information about the structural response to complex loading and environment. Sophisticated tools have been developed for the design and construction of civil engineering structures. However, very little has been accomplished in the area of monitoring and rehabilitation. The employment of appropriate sensor is therefore crucial, and efforts must be directed towards non-destructive testing techniques that remain functional throughout the life of the structure. Fiber optic sensors are emerging as a superior non-destructive tool for evaluating the health of civil engineering structures. Flexibility, small in size and corrosion resistance of optical fibers allow them to be directly embedded in concrete structures. The inherent advantages of fiber optic sensors over conventional sensors include high resolution, ability to work in difficult environment, immunity from electromagnetic interference, large band width of signal, low noise and high sensitivity. This paper brings out the potential and current status of technology of fiber optic sensors for civil engineering applications. The importance of employing fiber optic sensors for health monitoring of civil engineering structures has been highlighted. Details of laboratory studies carried out on fiber optic strain sensors to assess their suitability for civil engineering applications are also covered.

Static behavior of stud shear connectors with initial damage in steel-UHPC composite bridges

  • Qi, Jianan;Tang, Yiqun;Cheng, Zhao;Xu, Rui;Wang, Jingquan
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.413-421
    • /
    • 2020
  • For steel-concrete girders made composite using shear studs, initial damage on studs induced by weld defect, unexpected overloading, fatigue and others might degrade the service performance and even threaten the structural safety. This paper conducted a numerical study to investigate the static behavior of damaged stud shear connectors that were embedded in ultra high performance concrete (UHPC). Parameters included damage degree and damage location. The material nonlinear behavior was characterized by multi-linear stress-strain relationship and damage plasticity model. The results indicated that the shear strength was not sensitive to the damage degree when the damage occurred at 2/3d (d is the stud diameter) from the stud root. An increased stud area would be engaged in resisting shear force as the distance of damage location from stud root increased and the failure section becomes inclined, resulting in a less reduction in the shear strength and shear stiffness. The reduction factor was proposed to consider the degradation of the shear strength of the damaged stud. The reduction factor can be calculated using two approaches: a linear relationship and a square relationship with the damage degree corresponding to the shear strength dominated by the section area and the nominal diameter of the damaged stud. It was found that the proposed method is preferred to predict the shear strength of a stud with initial damage.

A methodology for remaining life prediction of concrete structural components accounting for tension softening effect

  • Murthy, A. Rama Chandra;Palani, G.S.;Iyer, Nagesh R.;Gopinath, Smitha
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.261-277
    • /
    • 2008
  • This paper presents methodologies for remaining life prediction of plain concrete structural components considering tension softening effect. Non-linear fracture mechanics principles (NLFM) have been used for crack growth analysis and remaining life prediction. Various tension softening models such as linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate expressions. A methodology to account for tension softening effects in the computation of SIF and remaining life prediction of concrete structural components has been presented. The tension softening effects has been represented by using any one of the models mentioned above. Numerical studies have been conducted on three point bending concrete structural component under constant amplitude loading. Remaining life has been predicted for different loading cases and for various tension softening models. The predicted values have been compared with the corresponding experimental observations. It is observed that the predicted life using bi-linear model and power curve model is in close agreement with the experimental values. Parametric studies on remaining life prediction have also been conducted by using modified bilinear model. A suitable value for constant of modified bilinear model is suggested based on parametric studies.

Influence of Job Stress on Fatigue and Job Satisfaction - with Some 119 Emergency Medical Technician in Gyeonggido - (직무스트레스가 피로와 직무만족도에 미치는 영향 - 경기소방 일부 119구급대원을 중심으로 -)

  • Park, Dae-Sung;Park, Sang-Sub
    • The Korean Journal of Emergency Medical Services
    • /
    • v.12 no.3
    • /
    • pp.71-86
    • /
    • 2008
  • Purpose : This study was to examine the influence of job stress of 119 Emergency Medical Technician on fatigue and job satisfaction. Methods : Subjects of this study were 228 Emergency Medical Technicians who worked at 119 Safety Center of total 92 fire stations in 12 cities of Gyeonggido including U, N, H, B, A, S, Y, G, G, G, P and I and the period of data collection was from July 11 to Sep. 10, 2007. Collected data were analyzed with SPSS 14.0 version. Results : Conclusions of this study were as follows. 1) Factor related to organization among job stress factors had the greatest influence on fatigue (B = 0.334, p < 0.01), followed by crisis situation factor (B = 0.2042, p < 0.01), inappropriate treatment factor (B = 0.174, p < 0.05), role conflict factor as special job (B = 0.109, p < 0.05) and professional knowledge and technique factor (B = 0.109, p < 0.05), and the influence of job stress factors on fatigue was explained as $R^2=0.340$. 2) Mental burden factor of job stress factors had the greatest influence on job satisfaction (B = -0.606, p < 0.01), followed by organization factor (B = -0.473, p < 0.01) and interpersonal relation and conflict factor (B = -0.339, p < 0.01), and the influence of job stress factor on fatigue was explained as $R^2=0.308$. Conclusions : Job stress of 119 rescuer is increasing continuously and such an accumulated stress lowers the job efficiency. In order to reduce, job stress, it is important to extend(${\rightarrow}$ have) proper self-development, maintain close relationships and mutual correlations among members of organization in personal dimension and to solve the role conflicts, define the organizational roles and simplify excessive job description into concrete work.

  • PDF