• Title/Summary/Keyword: fatigue of concrete

Search Result 475, Processing Time 0.023 seconds

Fatigue Behavior of Simply Supported Under Reinforcde Concrete Beams (과소철근콘크리트 단수보의 피로거동)

  • 변근주;김영진;노병철;장세창
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.41-48
    • /
    • 1991
  • In recent years, conskderable interest has developed in the fatigue strength of reinforced concrete members subjected to cyclic loading for the wide-spread adoption of ultimate strength design poecedures, the higher strength materials and the new recognition of the effect of repeated loading on structures such as bridges, concrete pavementes and offshore structures. In this study, a series of experiments is carried out to investigate the fatigue characteristics of deformed bars and underreinforced simply supported beams. The 69 reinforcing bar specimens with grade SD30 and designation of D16, D22, D25, and 24 beam specimens with D16 bars are prepared for this study. From these series of tests, it is found that I) a decrease of the bar deameter result in increased fatigue life, ii) the fatigue life of the bars embedded as main reinforcement within a concrete is more than that of bars in the air. iii) the fatigue strength at 2$\times$106 cycles of beams with steel ratio of 0.61% and 1.22% is 64.5% and 63.2% of the yielding strength, restectively. It is concluded that the low steel ratio has no significant effect on fatigue strength of underreinforced beams and the fatigue life of underreinforced concrete beams can be predicted conservatively by the fatigue life lf reinforcing bar.

  • PDF

Fatigue Analysis of Pavement Concrete by Flexural Fatigue Test (휨피로시험을 이용한 포장용 콘크리트의 피로해석)

  • 최창식;김동호;김성환;이주형;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.401-406
    • /
    • 2002
  • The purpose of this research was to obtain fatigue property of pavement concrete by flexural fatigue test. The size of specimen used in fatigue tests was 10$\times$10$\times$46cm. The specimens of pavement concrete were fabricated using the concrete at job site. The fatigue tests were performed by applying into a constant amplitude loading. The flexural fatigue tests were performed by stress levels of 90%, 80%, 70% and 60%, and stress ratio of 0.1. From this research, the S-N relationship, S-N-P relationship were derived and Weibull probability density functions was plotted using the distribution parameters.

  • PDF

A Study for the Fatigue Crack Growth Behavior of Concrete (콘크리트의 피로균열 성장거동에 관한 연구)

  • 김진근;김윤용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.101-107
    • /
    • 1996
  • In this study, the wedge splitting test (WST) specimens with various strength levels were tested to investigate the fatigue crack growth behavior of concrete. Selected test variables were concrete compressive strength with 2 levels (28 MPa, 60 MPa, 100 MPa) and maximum fatigue loading with 2 levels (75%, 85%). Fatigue testing was preceded by fracture energy test and the crack growth was measured by means of the compliance calibration method, 60 WST specimens were cast for the fatigue test, and 6 companion cylinders ($\phi$100${\times}$ 200 mm) for each batch. In fatigue test, the frequency of loading cycle was 1 Hz, and the minimum fatigue loading level was 5~10 % of ultimate monotonic loading. On the basis of the experimental results, a fracture mechanics-based empirical relationships for fatigue crack growth rate (da/dN-$\Delta$KI relationships) were presented. In addition, the effect of initial notch depth on the fracture energy and the validity of compliance calibration technique for the WST were shown.

  • PDF

An Equivalent Fatigue Load Model for Prestressed Concrete Bridges Girders (프리스트레스트 콘크리트 교량거더의 등가피로하중모델)

  • 김지상
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.148-158
    • /
    • 1994
  • The goal of this study is to develop an equivalent fatigue load model for prestressed concrete composite girder bridges in Korea. To meet this goal, the probabilistic characteristics of traffics which cause fatigue damage in bridges are properly modeled. An equivalent fatigue load inodel for prestressed concrete composite girder bridges with constant. amplitude and frequency is established. The model proposed in this paper is very simple to use and gives fairly good results.

Static and fatigue performance of stud shear connector in steel fiber reinforced concrete

  • Xu, Chen;Su, Qingtian;Masuya, Hiroshi
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.467-479
    • /
    • 2017
  • The stud is one of the most frequently used shear connectors which are important to the steel-concrete composite action. The static and fatigue behavior of stud in the steel fiber reinforced concrete (SFRC) were particularly concerned in this study through the push-out tests and analysis. It was for the purpose of investigating and explaining a tendency proposed by the current existing researches that the SFRC may ameliorate the shear connector's mechanical performance, and thus contributing to the corresponding design practice. There were 20 test specimens in the tests and 8 models in the analysis. According to the test and analysis results, the SFRC had an obvious effect of restraining the concrete damage and improving the stud static performance when the compressive strength of the host concrete was relatively low. As to the fatigue aspect, the steel fibers in concrete also tended to improve the stud fatigue life, and the favorable tensile performance of SFRC may be the main reason. But such effect was found to vary with the fatigue load range. Moreover, the static and fatigue test results were compared with several design codes. Particularly, the fatigue life estimation of Eurocode 4 appeared to be less conservative than that of AASHTO, and to have higher safety redundancy than that of JSCE hybrid structure guideline.

Fatigue Failure Characteristics of Steel Fiber Reinforced Concrete Considering Cumulative Damage (누적손상을 고려한 강섬유보강 콘크리트의 피로파괴 특성)

  • 김동호;홍창우;이주형;이봉학
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.117-126
    • /
    • 2002
  • Concrete containing discontinuous discrete steel fiber in a normal concrete is called steel fiber reinforced concrete(SFRC). Tensile as well as flexural strengths of concrete could be substantially increased by introducing closely spaced fibers which delay the onset of tension cracks and increase the tension strength of cracks. However, many properties of SFRC have not been investigated, especially properties on repeated loadings. Thus, the purposes of this dissertation is to study the flexural fatigue characteristics of SFRC considering cumulative damage. A series of experimental tests such as compressive strength, splitting tensile strength, flexural strength, flexural fatigue, and two steps stress level fatigue were conducted to clarify the basic properties and fatigue-related properties of SFRC. The main experimental variables were steel fiber fraction (0, 0.4, 0.7, 1, 1.5%), aspect ratio (60, 83). The principal results obtained through this study are as follows: The results of flexural fatigue tests showed that the flexural fatigue life of SFRC is approxmately 65% of ultimate strength, while that of plain is less than 58%. Especially, the behavior of flexural fatigue life shows excellent performance at 1.0% of steel-fiber volume fraction. The cumulative damage test of high-low two stress levels is within the value of 0.6 ∼ 1.1, while that of low-high stress steps is within the value of 2.4 ∼ 4.0.

Pre-fatigue Damage of the Strengthened Bridge Deck for Study on Fatigue Behavior (피로거동파악을 위한 성능향상된 교량상판의 사전피로손상의 고찰)

  • 심종성;오홍섭;김진하
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.697-700
    • /
    • 2000
  • Fatigue damage to reinforced concrete bridge decks have been found in many bridges. Failure mode of most reinforced concrete decks is caused by local punching shear rather than flexural moment due to cumulated damage. In this study, mechanical degradation of unstrengthened and strengthened bridge deck specimens is experimentally investigated. The unstrengthened deck specimens were damaged under the pulsating loading condition. After the test, deteriorated deck specimens were strengthened with Carbon Fiber Sheet, then loaded to observe the improvement of the fatigue behavior. It is shown that fatigue damaged specimens are similar to real bridge rather than static damaged specimens.

  • PDF

A Theoretical and Experimental Investigation on the Fatigue Strength and Fatigue Reliability Analysis of Concrete (콘크리트의 피로강도 및 피로신뢰성해석에 관한 이론 및 실험연구)

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.113-119
    • /
    • 1985
  • The fatigue strength and reliability of concrete subjected to ftexural loading is investigate. The concrete beam specimens are prepared and tested in four-point flexural loading in which the bottom fiber stress varies from zero to a predetermined maximum stress. The S-N curves are generated from these test results and an equation is obtained by regression analysis to predict the flexural fatigue strength of concrete. A method is presented to perform the probabilistic analysis on the flexural fatigue of concrete. It is shown that the Weibull distribution has physically more convincing features and may be appropriate to describe the fatigue behavior of concrete.

  • PDF

Residual bearing capacity of steel-concrete composite beams under fatigue loading

  • Wang, Bing;Liu, Xiaoling;Zhuge, Ping
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.559-569
    • /
    • 2021
  • This study was conducted to investigate the residual bearing capacity of steel-concrete composite beams under high-cycle fatigue loading through experiments and theoretical analysis. Six test beams with stud connectors were designed and fabricated for static, complete fatigue, and partial fatigue tests. The failure modes and the degradation of several mechanical performance indicators of the composite beams under high-cycle fatigue loading were analyzed. A calculation method for the residual bearing capacity of the composite beams after certain quantities of cyclic loading cycles was established by introducing nonlinear fatigue damage models for concrete, steel beam, and shear connectors beginning with the material residual strength attenuation process. The results show that the failure mode of the composite beams under the given fatigue load appears to be primarily affected by the number of cycles. As the number of fatigue loadings increases, the failure mode transforms from mid-span concrete crushing to stud cutting. The bearing capacity of a 3.0-m span composite beam after two million fatigue cycles is degraded by 30.7% due to premature failure of the stud. The calculated values of the residual bearing capacity method of the composite beam established in this paper agree well with the test values, which indicates that the model is feasibly applicable.

A Behavior Analysis of HSR concrete slab track under Variety of Rail pad stiffness on fatigue effect (피로효과를 고려한 레일패드 스프링계수 변화에 따른 콘크리트 슬래브 궤도의 거동분석)

  • Eom, Mac;Choi, Jung-Youl;Chun, Dae-Sung;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.340-350
    • /
    • 2007
  • The major objective of this study is to investigate the fatigue effects of rail pad on High Speed Railway with concrete slab track system. It analyzed the mechanical behaviors of HSR concrete slab track with applying rail pad stiffness based on fatigue effect(hardening and increasing stiffness) on the 3-dimensional FE analysis and laboratory test for static & dynamic characteristics. As a result, the hardening of rail pad due to fatigue loading condition are negative effect for the static & dynamic response of concrete slab track which is before act on fatigue effect. The analytical and experimental study are carried out to investigate rail pad on fatigue effected increase vertical acceleration and stress and decrease suitable deflection on slab track. And rail pad based on fatigue effect induced dynamic maximum stresses, the increase of damage of slab track is predicted by adopting fatigue effected rail pad. after due consideration The servicing HSR concrete slab track with resilient track system has need of the reasonable determination after due consideration fatigue effect of rail pad stiffness which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF