• Title/Summary/Keyword: fatigue loading

Search Result 1,077, Processing Time 0.025 seconds

Numerical Analysis Model for Fatigue Life Prediction of Welded Structures (용접구조물의 피로수명예측을 위한 수치해석모델)

  • Lee, Chi-Seung;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.49-54
    • /
    • 2009
  • In this study, the numerical analysis model for fatigue life prediction of welded structures are presented. In order to evaluate the structural degradation of welded structures due to fatigue loading, continuum damage mechanics approach is applied. Damage evolution equation of welded structures under arbitrary fatigue loading is constructed as a unified plasticity-damage theory. Moreover, by integration of damage evolution equation regarding to stress amplitude and number of cycles, the simplified fatigue life prediction model is derived. The proposed model is compared with fatigue test results of T-joint welded structures to obtain its validation and usefulness. It is confirmed that the predicted fatigue life of T-joint welded structures are coincided well with the fatigue test results.

Fatigue Damage of Quasi-Isotropic Composite Laminates Under Tensile Loading in Different Directions (인장하중방향 변화를 받는 의사등방성 복합재 적층판의 피로손상)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.80-85
    • /
    • 1999
  • The purpose of this work is to investigate fatigue damage of quasi-isotropic laminates under tensile loading in different directions. Low cycle fatigue tests of [0/-60/+60]a laminates and [+30/-30/90]s lamina tes were carried out. Material systems used are AS4/Epoxy and AS4/PEEK. The fatigue damage of [+30/-30/90]s is very different from that of [0/-60/+60]s. The position of delamination generated at AS4/Epoxy and AS$/PEEK laminates were differentiated by the matrix difference that is, we suppose, the value of both GIcr(critical energy release rate of mode-I) and GIIIcr(critical energy release rate of mode-III) difference.

  • PDF

Fatigue Behavior of Alumina Ceramics under the Repeated Dynamic Loading (반복 동적하중에 의한 알루미나 세라믹스의 피로거동)

  • 이규형;박성은;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.850-856
    • /
    • 1998
  • The dynaamic fatigue behavior of alumina ceramics was observed at room temperature using four-point bending method. Dynamic fatigue fracture strength was observed as function of down speed and notch length. The crack growth exponent of the specimens was calculated from the fracture strength and lifetime in dynamic fatigue test. After loading the stresses in the range of 0% to 105% compared with the average in-ert strength the value of residual fracture strength was measured for unnotched and 0.5mm notched speci-mens at the 0.001 and 0.0005 mm/min down speed respectively. After the 95% stress of the average inert strength was applied repeatedly the value of rsidual fracture strength was measured for 0.5mm notched specimens at the 0.001 and 0.0005 mm/min down speed respectively. The material constant A was found to be almost the same and not to depend on the loading mode or the down speed for unnotched and notched specimen. The value of fracture strength with time calculated from the constants n and A was in good agreement with the measured value.

  • PDF

Durability Study of Subway Brake Disc and Wheel-type Brake (지하철의 브레이크 디스크와 차륜방식브레이크의 내구성 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.22-28
    • /
    • 2019
  • In this study, as part of the subway braking system, the structural analysis was performed with the fatigue analysis by comparing subway brake disc and wheel-type brake. When structural analysis was performed, it was possible to verify that the wheel-type brake were higher than the brake discs in case of total deformation. As the same loading conditions were given to the subway brake disc and wheel-type brake, wheel-type brakes was shown to have more deformation than brake disk but lower damage than the subway brake disc. Comparing with each fatigue loading condition, the maximum fatigue life for 'Sample history' is found to be about 60 times longer than for 'SAE bracket history'.

Low cycle fatigue and ratcheting failure behavior of AH32 steel under uniaxial cyclic loading

  • Dong, Qin;Yang, Ping;Xu, Geng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.671-678
    • /
    • 2019
  • In this paper, the low cycle fatigue failure and ratcheting behavior, as well as their interaction of AH32 steel were experimentally investigated under uniaxial cyclic loading. The effects of mean stress, stress amplitude and stress ratio on the low cycle fatigue life and ratcheting strain were discussed. It was found that the ratcheting strain increased while the fatigue life decreased with the increase of mean stress and stress amplitude, and the increasing stress ratio would result in smaller ratcheting and larger fatigue life. Two kinds of failure modes, i.e. low cycle fatigue failure due to crack propagates and ratcheting failure due to large plastic strain will take place respectively. Based on the experimental results, considered the effect of ratcheting on fatigue life, a model with the maximum stress and ratcheting strain rate was proposed. Comparison with the experimental result showed that the new model provided a good prediction for AH32 steel.

A Experimental Application of Carbon Fiber Sheet for Strenthening Bridge Decks received fatigue loads (반복하중을 받는 교량바닥판의 보강을 위한 탄소섬유쉬트의 적용성에 대한 실험적 연구)

  • 심종성;오홍섭;김진하;김성엽
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.757-762
    • /
    • 2001
  • This study was performed experiment for strengthened bridge decks with isotropic carbon fiber sheets received fatigue loading, and compared with fatigue behavior of unstrengthened bridge decks. By the results, this study was examined effect of increasing strengthened to phase life cycles of bridge deck for fatigue loading and application of the punching shear theory of bridge deck strengthened by carbon fiber sheet.

  • PDF

Performance of Cemented Carbides in Cyclic Loading Wear Conditions

  • Kubarsepp, J.;Klaasen, H.;Sergejev, F.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.887-888
    • /
    • 2006
  • The present study describes the wear and mechanical behaviour of carbide composites in cyclic loading applications (blanking of sheet metal). Adhesive wear as well as fatigue endurance were tested, complemented by XRD studies. It was found that the blanking performance of a carbide composite is controlled by its resistance to adhesion wear and fatigue sensitivity. XRD studies revealed that fatigue damage is preceded by plastic strain in both phases of the composites

  • PDF

Effect of Stringers in Stiffened Panel under Varying Fatigue Load (일정진폭 및 변동하중을 받는 보강판에서 보강재가 피로균열전파에 미치는 영향)

  • 이억섭;이윤표
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.136-145
    • /
    • 2003
  • The integrity of stiffened panels with stringers in airplane structure is generally enhanced by investigating the fatigue crack propagation behavior in detail and providing the technical methodology to deal with the propagating crack. This paper attempts to clarify the effect of load-ratio on the fatigue crack propagation rate and the fatigue life for the thin aluminum 2024-T3. Both the variable and the constant fatigue loading conditions are considered for the fatigue crack propagation behavior in stiffened panels with stringers.

A comparative study of methods to predict fatigue crack growth under random loading (랜덤하중 하에서 피로균열진전예측 방법들의 비교)

  • Choi, Byung-Ik;Kang, Jae-Youn;Lee, Hak-Joo;Kim, Chung-Youb
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.235-240
    • /
    • 2003
  • Methods to predict fatigue crack growth are compared in a quantitative manner for crack growth test data of 2024-T351 aluminum alloy under narrow and wide band random loading. In order to account for the effect of load ratio, crack closure model, Hater's equation and NASGRO's equation have been employed. Load interaction effect under random loading has been considered by crack closure model, Willenborg's model and Wheeler's model. The prediction method using the measured crack opening results provides the best result among the prediction methods discussed for narrow and wide band random loading data.

  • PDF

A Comparative Study of Methods to Predict Fatigue Crack Growth under Random Loading (랜덤하중 하에서 피로균열진전예측 방법들의 비교)

  • Lee, Hak-Joo;Kang, Jae-Youn;Choi, Byung-Ik;Kim, Chung-Youb
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1785-1792
    • /
    • 2003
  • Methods to predict fatigue crack growth are compared in a quantitative manner for crack growth test data of 2024- T351 aluninum alloy under narrow and wide band random loading. In order to account for the effect of load ratio, crack closure model, Hater's equation and NASGRO's equation have been employed. Load interaction effect under random loading has been considered by crack closure model, Willenborg's model and Wheeler's model. The prediction method using the measured crack opening results provides the best result among the prediction methods discussed for narrow and wide band random loading data.