• Title/Summary/Keyword: fatigue load test

Search Result 600, Processing Time 0.024 seconds

A Study on the Structural Analysis and Test of the Bogie Frame According to UIC Code (UIC code에 따른 대차 프레임 구조해석 및 시험에 관한 연구)

  • 최중호;송시엽;천홍정;전형용;박형순
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.884-891
    • /
    • 2002
  • This report is the result performed the structural analysis and the static and fatigue load test of bogie frame for the purpose of designing and verifying the bogie frame which satisfy the load condition required in the UIC code. This investigation is proposed the efficient draft of the design to satisfy the load condition required in the UIC code. And It is performed the structural analysis to evaluate the static strength and the fatigue life of the patient material and the welded part. Also, This is proposed the efficient draft of the test to satisfy the method of the static and fatigue test required in the UC code. And it is carried out the static and the fatigue load test to verify it. We can designed the bogie frame in compliance with UIC 515-4 and 615-4 code.

  • PDF

Influence of different fatigue loads and coating thicknesses on service performance of RC beam specimens with epoxy-coated reinforcement

  • Wang, Xiao-Hui;Gao, Yang;Gao, Run-Dong;Wang, Jing;Liu, Xi-La
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.243-256
    • /
    • 2017
  • Epoxy-coated reinforcing bars are widely used to protect the corrosion of the reinforcing bars in the RC elements under their in-service environments and external loads. In most field surveys, it was reported that the corrosion resistance of the epoxy-coated reinforcing bars is typically better than the uncoated bars. However, from the experimental tests conducted in the labs, it was reported that, under the same loads, the RC elements with epoxy-coated reinforcing bars had wider cracks than the elements reinforced with the ordinary bars. Although this conclusion may be true considering the bond reduction of the reinforcing bar due to the epoxy coating, the maximum service loads used in the experimental research may be a main reason. To answer these two phenomena, service performance of 15 RC beam specimens with uncoated and epoxy-coated reinforcements under different fatigue loads was experimentally studied. Influences of different coating thicknesses of the reinforcing bars, the fatigue load range and load upper limit as well as fatigue load cycles on the mechanical performance of RC test specimens are discussed. It is concluded that, for the test specimens subjected to the comparatively lower load range and load upper limit, adverse effect on the service performance of test specimens with thicker epoxy-coated reinforcing bars is negligible. With the increments of the coating thickness and the in-service loading level, i.e., fatigue load range, load upper limit and fatigue cycles, the adverse factor resulting from the thicker coating becomes noticeable.

Fatigue Durability Analysis and Evaluation for Straighted Type Exhaust System of Automobile (자동차용 직선화 배기시스템의 피로내구 해석 및 평가)

  • Park Sejong;Suh Hocheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.147-152
    • /
    • 2005
  • The exhaust system of automobile is faced with random or spectrum types of fatigue loads during usage life and so needs to be closely estimated for quality and performance to have enough certainty on design endurance lift during preliminary design process. Structural operation conditions, operation load history, property of material and manufacturing process etc. should be considered by performing experiment approach. Using the software program for predicting fatigue life quickly and exactly in preliminary design stage saves plenty of time and cost generated by fatigue tests. In this paper, fatigue life prediction was performed on the basis of fatigue analysis using MSC/FATIGUE and load data from field test and the life of development items was estimated and compared through the results.

The Development of Fatigue Load Spectrum and Fatigue Analysis for the Tilt Rotor UAV (틸트 로터 무인항공기의 피로하중 스펙트럼 생성 및 피로해석)

  • Im, Jong-Bin;Park, Young-Chul;Park, Jung-Sun;Lee, Jeong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.654-659
    • /
    • 2007
  • In this paper, the fatigue load spectrum for tilt rotor UAV is developed and fatigue analysis is achieved for flaperon joint. Tilt rotor UAV has two modes which are helicopter mode when UAV is taking off and landing and fixed wing mode when UAV is cruising. To make fatigue load spectrum, FELIX for helicopter mode and TWIST for fixed wing mode are used. And Fatigue analysis of flaperon joint is achieved using fatigue load spectrum we obtained. When S-N test data are analyzed, we use the Kriging meta model to get probability S-N curve for whole range of material life. The result which is life of flaperon joint obtained by suggested fatigue analysis procedure in this paper is compared with that obtained by MSC/Fatigue.

  • PDF

Fatigue Crack Propagation Characteristics in HAZ of A106 Gr B Steel Weldments (A106 Gr B강 용접열영향부에서의 피로균열성장특성)

  • 김철한;조선영;김복기;배동호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.263-268
    • /
    • 1999
  • With HAZ of A 106 Gr B steel weldment, fatigue test in air, electrochemical polarization test and corrosion fatigue test in 3.5wt.% NaCl solution were performed changing load ratio. Obtained results are as follows. 1) K$\sub$op/ was independent of K$\sub$max/ and load ratio in fatigue crack growth. 2) In variation of load ratio, the scatter band of crack growth curve was reduced by half considering crack closure 3) In the result of electrochemical polarization test, current density was increased abruptly when potential was larger than corrosion potential. 4) Fatigue crack growth rate in corrosive environment was markly higher than the rate in air because of corrosion characteristics of the material and anodization of inner surface crack.

  • PDF

A study on the strength characteristics of welded joints in aluminum carbody of rolling stock (알루미늄 철도차량 차체 용접부의 강도 특성에 관한 연구)

  • 서승일
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.290-292
    • /
    • 2004
  • In this paper, static and fatigue load tests for the specimens, components and carbody were carried out to investigate the strength of welded joints in aluminum rolling stock. Tensile load test results showed that the static strength of welded joint for heat-treated alloys is reduced significantly and fatigue strengths are scattered by the welding imperfections. Component and whole carbody fatigue test results showed agreements with the design fatigue strength standards for specimens of same joint detail. Test results revealed that full penetration welding and strict management of welding procedure are crucial for securing strength of welded joint in aluminum carbody.

  • PDF

Improvement to Crack Retardation Models Using ″Interactive Zone Concept″

  • Lee, Ouk-Sub;Chen, Zhi-Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.72-77
    • /
    • 2002
  • The load interaction effect can be best illustrated by the phenomenon of overload retardation. Some prediction methods for retardation are reviewed and the problems discussed in the present paper. The so-called under-load effect much of the retardation disappears if a very low level minimum stress follows the overload, is also of importance for a prediction model to work properly under random load spectrum. The concept of Interactive Zone (IZ) fully considering reversed plasticity during unloading was discussed. This IZ concept can be combined with existing models to derive some improved models that can naturally take account of the under-load effect. Some simulations by IZ improved models for test under complex load sequences including multiple overloads and both over/under loads are compared with test results. It is seen that the improvement by IZ concept greatly enhanced the ability of existing models to accommodate complex load interaction effects.

Fatigue Safety Evaluation of the Half-Depth Precast Deck with RC Rib Panel (리브 형상을 갖는 반단면 프리캐스트 바닥판의 피로 안전성 평가)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.103-110
    • /
    • 2019
  • In order to reduce the accidents occurring at construction sites, it is necessary to approach with harmonious measures considering various aspects such as systems, training, facilities, and protection equipments. Suggestion of safe construction method can be a good alternative. In the previous study, the half-depth precast deck with RC rib panel was proposed as an alternative method for safe bridge deck construction, and the performance required by the design code was verified through a four-point bending test. But the actual bridge deck is subjected to the repetitive action of the wheel load rather than the bending condition due to the four-point load. In this study, fatigue test was performed by repeating the wheel load $2{\times}10^6$ cycles to verify the safety of the half-depth precast deck with RC rib panel under actual conditions. As a result, fatigue effect due to repetition of wheel load was not significant in terms of serviceability such as crack width and deflection. In the residual strength test conducted after the fatigue test, the half-depth precast deck with RC rib panel failed by punching shear which is typical failure mode of bridge decks and the residual strength was similar to the punching strength of the RC and PSC bridge decks in spite of the fatigue effects.

Fatigue Life Evaluation of the Plastic Gear (플라스틱 기어의 피로수명 평가 및 수명 예측)

  • Chong Tae Hyong;Kang Sung Kyu;Ha Young Wook
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.239-245
    • /
    • 2005
  • Through the fatigue test of plastic gears using polyacetal polymer, this research aims at providing basic data for not only specifying operation conditions of plastic gears, but also designing dimensions of plastic gears with giving fatigue life and the estimated equation of fatigue life of plastic gears. That is, from the fatigue life curves, the estimated equation of fatigue life of plastic gears is taken out. For the estimated equation of fatigue life of plastic gears, this research provides two test methods; one is preserving non-limited temperature of tooth flank, the other is preserving limited temperature of tooth flank. As results, how the temperature of tooth flank affects the fatigue life is shown. In addition, based on the endurance limit, the essential factors of the unit load and K-factor are determined, which are needed in the design of gear by bending strength and surface durability.

  • PDF

Fatigue Life Prediction of Non-Load-Carrying Cruciform Welded Joint using Master S-N Curve based on Structural Stress Approach (구조응력기반 마스터 피로 선도를 이용한 하중 비전달형 십자 필렛 용접조인트의 피로예측)

  • Kwak, Si-Young
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.49-54
    • /
    • 2015
  • Welding process is of importance to assemble products or structures, but also the process is structural weakness due to stress concentration in welding joint. The fatigue design of welded joint requires time & labor consuming fatigue test because the fatigue life is various according to the depth of joint, joint type and load type etc. In fatigue design codes, they guide to classify welding joints with their shape( BS7608, IIW Documents) and provide fatigue assessment information. In terms of numerical method for fatigue analysis, it is also difficult to decide the stress peak in joint because of mesh sensitivity which means that stress value is varies with element type or size on stress concentration zone. Hot-spot method is used generally, but Battelle of United States proposed Master S-N Curve based on structural stresses converted by mechanical equilibrium theory. In this research, we extracted master S-N curve from Battelle's fatigue test DB including test data of various welding joints to apply on Non-Load-Carrying cruciform Joint. Comparing fatigue results between the case of using normal stress and case of structural stress cor the cruciform Joint, The suggested Battelle method showed successive results.