• Title/Summary/Keyword: fatigue lives

Search Result 216, Processing Time 0.03 seconds

Prediction of fatigue crack initiation life in SA312 Type 304LN austenitic stainless steel straight pipes with notch

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Anjusha, K.V.;Gandhi, P.;Singh, P.K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1588-1596
    • /
    • 2022
  • In the nuclear power plants, stainless steel is widely used for fabrication of various components such as piping and pipe fittings. These piping components are subjected to cyclic loading due to start up and shut down of the nuclear power plants. The application of cyclic loading may lead to initiation of crack at stress raiser locations such as nozzle to piping connection, crown of piping bends etc. of the piping system. Crack initiation can also take place from the flaws which have gone unnoticed during manufacturing. Therefore, prediction of crack initiation life would help in decision making with respect to plant operational life. The primary objective of the present study is to compile various analytical models to predict the crack initiation life of the pipes with notch. Here notch simulates the stress raisers in the piping system. As a part of the study, Coffin-Manson equations have been benchmarked to predict the crack initiation life of pipe with notch. Analytical models proposed by Zheng et al. [1], Singh et al. [2], Yang Dong et al. [25], Masayuki et al. [33] and Liu et al. [3] were compiled to predict the crack initiation life of SA312 Type 304LN stainless steel pipe with notch under fatigue loading. Tensile and low cycle fatigue properties were evaluated for the same lot of SA312 Type 304LN stainless steel as that of pipe test. The predicted crack initiation lives by different models were compared with the experimental results of three pipes under different frequencies and loading conditions. It was observed that the predicted crack initiation life is in very good agreement with experimental results with maximum difference of ±10.0%.

Structural Safety Evaluation of Basic Design Model of Linear Actuator for Blade Pitch Control of eVTOL Aircraft (eVTOL 항공기 블레이드 피치 제어용 선형 구동기 기본설계 모델의 구조 안전성 평가)

  • Young-Cheol, Kim;Dong-Hyeop, Kim;Sang-Woo, Kim;Jeong-Hyun, Kang;Dohyung, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.106-113
    • /
    • 2022
  • The structural safety of the basic design model of the linear actuator for the individual blade pitch control of eVTOL personal aircraft was investigated. Stress analysis based on the finite element method was conducted, and the margin of safety was calculated to examine the structural safety under stall load conditions. Additionally, fatigue analysis was conducted to evaluate the fatigue life of the linear actuators under operating conditions. The load history with the blade pitch angle was calculated using multi-body dynamics analysis, and the static load analysis was used to obtain the stress distribution for the rated load. As a result, it was confirmed that the safety margins exceeded zero, and the fatigue lives of all linear actuator components exceeded 107 cycles, indicating a safe structural range.

Inconel 718 and UNSM Treated Alloy Study on the Rotary Bending High Temperature Fatigue Characteristics under a Light Concentrating System (인코넬 718강의 UNSM처리재의 고온하의 피로특성에 관한 연구)

  • Suh, Chang Min;Nahm, Seung Hoon;Woo, Young Han;Hor, Kwang Ho;Hong, Sang Hwui;Kim, Jun Hyong;Pyun, Young Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.935-941
    • /
    • 2016
  • This study investigated the influence of high temperature and UNSM on the fatigue behavior of Inconel 718 alloy at RT, 300, 500, and $600^{\circ}C$. Fatigue properties of Inconel 718 were reduced at high temperatures compared to those at room temperature. However, the endurance limit was similar to that of the room temperature sample at the design stress level. High-temperature fatigue characteristics of the UNSM-treated specimen were significantly improved at the design stress level as compared to the untreated specimens. Specifically, the influence of temperature on the S-N curves at the design stress level of the UNSM-treated specimen showed the tendency of longer fatigue lives than those of untreated ones. Researchers can obtain rotary fatigue test results simply by heating specimens with a halogen lamp to precise temperatures during specific operations.

A Case Study on the Lights Fire(Focus on the Electric Bulbs and Fluorescent Lamps) (조명등 화재사례 연구(전구 및 형광등 중심으로))

  • Song, T.H.;Lee, E.P.
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.11 no.1
    • /
    • pp.41-58
    • /
    • 2008
  • The history of illumination has been much long since the discovery of lamplight caused huge changes in human lives. However, the swift development of the illumination actually started with the invention of a carbon filament lamp by Thomas Edison in 1878. Generally, the illumination tools plays important roles in human lives such as reduction of fatigue, improvement of safety and working efficiency, and the creation of enjoyable atmosphere. But, the illumination tools can be an origin of the fire due to carelessness and lack of management. In this study, the principle and structure of the illumination lamp were dealt with. The possibility of the fire outbreak caused by the incandescent lamp and fluorescent lamp most used in home was investigated. The examples of the fire outbreaks by the incandescent and fluorescent lamps and by the contact between the inflammable materials and the distributing wires were mentioned and demonstrated by the experimental.

  • PDF

Prediction of Crack Growth in 2124-7851 Al-Alloy Under Flight-Simulation Loading (비행하중하에서 2124-T851 알루미늄합금의 피로균열진전 예측)

  • Sim, Dong-Seok;Hwang, Don-Yeong;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1487-1494
    • /
    • 2002
  • In this study, to propose the prediction method of the crack growth under flight-simulation loading, crack growth tests are conducted on 2124-7851 aluminum alloy specimens. The prediction of crack growth under flight-simulation loading is performed by the stochastic crack growth model which was developed in previous study. First of all, to reduce the complex load history into a number of constant amplitude events, rainflow counting is applied to the flight-simulation loading wave. The crack growth, then, is predicted by the stochastic crack growth model that can describe the load interaction effect as well as the variability in crack growth process. The material constants required in this model are obtained from crack growth tests under constant amplitude loading and single tensile overload. The curves predicted by the proposed model well describe the crack growth behavior under flight-simulation loading and agree with experimental data. In addition, this model well predicts the variability of fatigue lives.

Ubiquitous Architectural Framework for UbiSAS using Context Adaptive Rule Inference Engine

  • Yoo, Yoon-Sik;Huh, Jae-Doo
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.243-246
    • /
    • 2005
  • Recent ubiquitous computing environments increasingly impact on our lives using the current technologies of sensor network and ubiquitous services. In this paper, we propose ubiquitous architectural framework for ubiquitous sleep aid service(UbiSAS) in the subset of ubiquitous computing for refreshing of human's sleep. And we examine technical feasibility. Human can recover his health through refreshing sleep from fatigue. Ubiquitous architectural framework for UbiSAS in digital home offers agreeable sleeping environment and improves recovery from fatigue. So we present new concept of ubiquitous architectural framework dissolving stress. Specially, we apply context to context-aware framework module. This context is transferred to context adaptive inference engine which has service invocation function in intelligent agent module. Ubiquitous architectural framework for UbiSAS using context adaptive rule inference engine without user intervention is technical issue. That is to say, we should take sleep comfortably during our sleeping. And sensed information during sleeping is changed to context-aware information. This presents significant information in context adaptive rule inference engine for UbiSAS. This information includes all sleeping state during sleeping in context-aware computing technique. So we propose more effective and most suitable ubiquitous architectural framework using context adaptive rule inference engine for refreshing sleep in this paper.

  • PDF

Development of a RVIES Syetem for Reactor Vessel Integrity Evaluation (원자로용기 건전성평가를 위한 RVIES 시스템의 개발)

  • Lee, Taek-Jin;Choe, Jae-Bung;Kim, Yeong-Jin;Park, Yun-Won;Jeong, Myeong-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2083-2090
    • /
    • 2000
  • In order to manage nuclear power plants safely and cost effectively, it is necessary to develop integrity evaluation methodologies for the main components. Recently, the integrity evaluation techniques were broadly studied regarding the license renewal of nuclear power plants which were approaching their design lives. Since the integrity evaluation process requires special knowledges and complicated calculation procedures, it has been allowed only to experts in the specified area. In this paper, an integrity evaluation system for reactor pressure vessel was developed. RVIES(Reactor Vessel Integrity Evaluation System) provides four specific integrity evaluation procedures covering PTS(Pressurized Thermal Shock) analysis, P-T(Pressure-Temperature) limit curve generation, USE(Upper Shelf Energy) analysis and Fatigue analysis. Each module was verified by comparing with published results.

Development of Analytical Simulation Model for Fatigue Crack Propagation: Numerical Examples (균열개폐구 거동을 고려한 피로균열전파 해석 모델을 개발: 수치계산)

  • C.W. Kim;I.S. Nho;K.S. Do;B.C. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.84-92
    • /
    • 2001
  • The development of a crack propagation simulation model in consideration of crack closure behavior was discussed in the accompanying paper by the authors, Kim et al(2001). To verify crack propagation behavior under variable amplitude loading based on the model, calculations of effective crack driving stresses and corresponding propagation lives are carried out for load spectrums with various stress ratios, overload and underload. Good agreement is confirmed between test results in the literatures and simulations using the developed model.

  • PDF

Performance Evaluation of the High Durability Asphalt Mixture for Bridge Deck Pavements (고내구성 교면포장 아스팔트 혼합물의 공용성 평가에 관한 연구)

  • Park, Hee-Mun;Choi, Ji-Young;Lee, Hyun-Jong;Hwang, Eui-Yoon
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.51-62
    • /
    • 2007
  • Recently, the pavement distresses in the bridge deck have seriously affected the durability of bridge deck and driver's safety. The existing asphalt materials have the limitations in reducing the pavement distresses of brides deck. To protect the bridge deck and withstand the high deflection, it is necessary to develop the asphalt materials with good fatigue resistance for bridge deck pavement. The asphalt binder combined with SBS and two other admixtures has been developed for improving the resistance to fatigue cracking, productivity, and workability for bridge deck pavement. Based on the various binder test results, the developed binder is found to be PG 70-34 indicating very higher resistance against fatigue cracking. Fatigue testing, wheel tracking testing, and moisture susceptibility testing have been conducted to evaluate the performance of asphalt mixtures developed in this study. Laboratory test results show that the developed asphalt material has three times higher fatigue lives than the typical modified asphalt mixture. Full scale accelerated testing was also performed on the typical asphalt mixture and newly developed asphalt mixture to evaluate the full scale performance of asphalt mixtures. Test results indicate that the length of cracking on the new materials is only 38% of the typical material at the 250,000 load repetitions.

  • PDF

Durability Analysis of a Large-sized Military Truck Using Virtual Test Lab (가상 시험 모델을 이용한 군용 대형트럭의 내구해석)

  • Suh, Kwon-Hee;Song, Bu-Geun;Lim, Hyeon-Vin;Chang, Hun-Sub;Oh, Cheol-Jo;Yoo, Woong-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.57-64
    • /
    • 2011
  • In general, the durability performance of a large-sized military truck has been checked through a field durability test which required many man-hours and costs. To reduce these expenses, the durability analysis using a VTL(Virtual Test Lab) at an initial design stage was introduced recently. In this paper, the VTL with a multi-post testrig template for a large-sized truck was developed to compute the load histories transferred to cabin and chassis frame. The VTL consisted of trimmed FE models of cabin, chassis frame, and deck, dynamic models of front and rear suspensions, and a 8-post testrig template. The basic characteristics of the VTL were correlated with experimental results which had been extracted from actual driving test, modal test, and static weight test. The fatigue analysis using MSM(Modal Superposition Method) was applied to evaluate the durability performance of a large-sized military truck. From a series of analytic methods, it is shown that the fatigue analysis process using the VTL could be a useful tool to estimate the fatigue lives and weak areas of a large-sized military truck.