• Title/Summary/Keyword: fatigue failure time

Search Result 142, Processing Time 0.03 seconds

Constitutive Modeling of Asphalt Concrete with Time-Dependent Damage Growth (손상이 증가하는 아스팔트 콘크리트의 점탄성 구성모델)

  • 이현종
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.229-238
    • /
    • 1997
  • Mechanical behavior of asphalt concrete that accounts for viscoelasticity and damage evolution under cyclic loading conditions is modeled and presented in this paper. An elastic-viscoelastic correspondence principle in terms of pseudo variables is applied to separately evaluate viscoelasticity and time-dependent damage growth in asphalt concrete. A microcrack growth law, which is commonly employed in linear viscoelastic fracture mechanics, is successfully used for describing the damage growth in the body. A constitutive equation in terms of stress and pseudo strain is first established for controlled-strain mode, and then transformed to controlled-stress constitutive equation by simply replacing stress and pseudo strain with pseudo stress and strain. The transformed constitutive equation in terms of pseudo stress satisfactorily predicts the mechanical behavior of asphalt concrete all the way up to failure under controlled-stress modes.

  • PDF

Evaluation of Adhesion Characteristics of Crack Sealants Used in Asphalt Concrete Pavement (아스팔트 콘크리트 포장용 균열실링재의 부착특성 평가)

  • Lee, Jae-Jun;Kim, Seung-Hoon;Baek, Jong-Eun;Lim, Jae-Kyu;Kim, Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • Cracking is an inevitable fact of asphalt concrete pavements and plays a major role in pavement deterioration. Pavement cracking is one of the main factors determining the frequency and method of repair. Cracks can be treated with a number of preventative maintenance actions, including overlay surface treatments such as slurry sealing, crack sealing, or crack filling. Pavement cracks can show up as one or all of the following types: transverse, longitudinal, fatigue, block, reflective, edge, and slippage. Crack sealing is a frequently used pavement maintenance treatment because it significantly extends the pavement service life. However, crack sealant often fails prematurely due to a loss of adhesion. Because current test methods are mostly empirical and only provide a qualitative measure of the bond strength, they cannot accurately predict the adhesive failure of the sealant. This study introduces a laboratory test aimed at assessing the bonding of hot-poured crack sealant to the walls of pavement cracks. A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the bonding strength of the hot-poured crack sealant as a function of the curing time and temperature. Based on a limited number of test results, the hot-poured crack sealants have very different bonding performances. Therefore, this test method can be proposed as part of a newly developed performance-based standard specification for hot-poured crack sealants for use in the future. PURPOSES : The purpose of this study was to evaluate both the adhesion and failure performance of a crack sealant as a function of its curing time and curing temperature. METHODS: A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the adhesion performance of a crack sealant as a function of the curing time and curing temperature. RESULTS: With changes in the curing time, curing temperature, and sealant type, the bond strengths were found to be significantly different. Also, higher bond strengths were measured at lower temperatures. Different sealant types produced completely different bond strengths and failure behaviors. CONCLUSIONS: The bonding strength of an evaluated crack sealant was shown to differ depending on various factors. Two sealant types, which were composed of different raw materials, were shown to perform differently. The newly proposed test offers the possibility of evaluating and differentiating between different crack sealants. Based on alimited number of test results, this test method can be proposed as part of a newly developed performance-based standard specification for crack sealants or as part of a guideline for the selection of hot-poured crack sealant in the future.

Tissue Failure of the Standard-Profile lonescu-Shiley Pericardial Valve in Mitral Position (승모판에서의 표준형 이오네스류 판막의 조직실패)

  • 김종환
    • Journal of Chest Surgery
    • /
    • v.29 no.10
    • /
    • pp.1111-1117
    • /
    • 1996
  • Structural deterioration of the bioprosthetic xenograft valves due to primary tissue failure occurs in two modes: from fatigue lesions with tear and wear with or without calcification and from calcification with obstruction. Two groups of consecutive 56 patients with the Hancock porcine ortic valve(HM) and of 1 13 patients with the standard-profile onescu-Shiley bovine pericardial valve(ISM) explanted from mitral position at the time of re-replacement surgery for primary tissue failure at Seoul national University Hospital until 1994, were studied for clinical and pathological features. Their ages at primary implant were 31.9 $\pm$9.2 years In HM and 30.4$\pm$ 12.5 years in ISM. Hemodrnamic dysfunction of the failed mitral bloprostheses were predominantly insufficiency in HM(64.3%) and stenosis in ISM(51.3%)(p<0.001). Pathologic findings of the explanted mitral valves reflected these hemodynamic changes, revealing failure more often from tissue damage(tears and wears) in HM and more often from calcification in ISM(p< 0.001). Explant period(from primary implant to explant) was relatively short in ISM(8.7$\pm$2.6years), compared with the one in HM(10.4 $\pm$2.6 years)(p<0.001). In conclusion, both the Hancock and the lonescu-shiley valves would fail from calcification as well as issue damage. However, while the Hancock porcine valves in mitral position failed more frequently from tissue failure and insufficiency, the standard-profile lonescu-Shiley pericardial valves did from calcification and stenosis, especially in young pAtients . Although the possibility of less occurrence of valve failure from mechanical reasons may be expected with newer generation bloprostheses, it does not seem to Improve durability significantly unless further refinement in antimineralization is achieved. Therefore, clinical use of the glutaraldehyde-treated bioprosthetic valves is, at present, limited to the patients of advanced age groups.

  • PDF

A Study on the Strength Characteristics and Failure Detection of Single-lap Joints with I-fiber Stitching Method (I-fiber 스티칭 공법이 적용된 Single-lap Joint의 강도 특성 및 파손 신호 검출 연구)

  • Choi, Seong-Hyun;Song, Sang-Hoon;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.317-322
    • /
    • 2021
  • When a complex load such as torsion, low-speed impact, or fatigue load is applied, the properties in the thickness direction are weakened through microcracks inside the material due to the nature of the laminated composite material, and delamination occurs. To prevent the interlaminar delamination, various three-dimensional reinforcement methods such as Z-pinning and stitching, and structural health monitoring techniques that detect the microcrack of structures in real time have been continuously studied. In this paper, the single-lap joints with I-fiber stitching process were manufactured by a co-curing method and their strengths and failure detection capability were evaluated. AE and electric resistance method were used for detection of crack and failure signal and electric circuit for signal analysis was manufactured, and failure signal was analyzed during the tensile test of a single-lap joint. From the experiment, the strength of the single lap joint reinforced by I-fiber stitching process was improved by about 44.6% compared to the co-cured single lap joint without reinforcement. In addition, as the single-lap joint reinforced by I-fiber stitching process can detect failure in both the electrical resistance method and the AE method, it has been proven to be an effective structure for failure monitoring as well as strength improvement.

Viscoelastic Behaviors of Geosynthetic-Reinforced Asphalt Pavements (섬유보강 아스팔트 포장의 점탄성 거동연구)

  • In, Sik-Youn;Kim, Hyung-Bae;Ann, Sung-Sun;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.37-45
    • /
    • 2004
  • The asphalt concrete pavement takes various advantages of better riding quality, serviceability and easier maintenance. At the same time, it addresses a weak point of the premature failures due to rapid increasement of traffic volume, heavy vehicles and high temperature in summer. It increases the expenditure of maintenance and repair. In order to improve the performance of asphalt pavement avoiding this premature failure, the use reinforcements with geosynthetics have been considered. Geosynthetics are known as an effective reinforcement to restrain fatigue and reflective cracks in asphalt pavements. In this study, a comprehensive parametric study is conducted to capture the efficiency of geosynthetic-reinforcements using viscoelastic properties of the asphalt concrete(AC) layer. The investigated parameters were reinforcement location, AC layer thickness, temperature distribution across the AC layer and modulus of AC and base layer. As a result of observations, that reinforced asphalt concrete could be used effectively for improving resistance against fatigue cracks and permanent deformation. Especially, when a geogrid was placed at the interface between the asphaltic base and the subbase, tensile stress in the horizontal direction was significantly reduced.

  • PDF

Acceleration Test Method for Failure Prediction of the End Cap Contact Region of Sodium Cooled Fast Reactor Fuel Rod (소듐냉각 고속로 연료봉단의 접촉부 손상예측을 위한 가속시험 방법)

  • Kim, Hyung-Kyu;Lee, Young-Ho;Lee, Hyun-Seung;Lee, Kang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.375-380
    • /
    • 2017
  • This paper reports the results of an acceleration test to predict the contact-induced failure that could occur at the cylinder-to-hole joint for the fuel rod of a sodium-cooled fast reactor (SFR). To incorporate the fuel life of the SFR currently under development at KAERI (around 35,000 h), the acceleration test method of reliability engineering was adopted in this work. A finite element method was used to evaluate the flow-induced vibration frequency and amplitude for the test parameter values. Five specimens were tested. The failure criterion during the life of the SFR fuel was applied. The S-N curve of the HT-9, the material of concern, was used to obtain the acceleration factor. As a result, a test time of 16.5 h was obtained for each specimen. It was concluded that the $B_{0.004}$ life would be guaranteed for the SFR fuel rods with 99% confidence if no failure was observed at any of the contact surfaces of the five specimens.

Transient Effects of Wind-wave Hybrid Platform in Mooring Line Broken Condition (부유식 파력-해상풍력 복합발전 구조물의 계류선 손상 시 과도 응답 해석)

  • Bae, Yoon Hyeok;Lee, Hyebin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.129-136
    • /
    • 2016
  • Floating offshore structures keep its position by a mooring system against various kind of environmental loadings. For this reason, a reliable design of the mooring system is a key factor for initial design stage of a floating structure. However, there exists possibility of mooring failure, even the system is designed with enough safety margin, due to the unexpected extreme environmental conditions or long-term fatigue loadings. The breaking of one of the mooring lines may change the tension level of the other mooring lines, which can potentially result in a progressive failure of the entire structure. In this study, time domain numerical simulation of 10MW class wind-wave hybrid platform was carried out with partially broken mooring line. Overall platform responses and variations of the mooring line tension were numerically evaluated.

A Study on Safety Estimation of Railroad Wheel (컨테이너 철도차륜의 안전성 평가에 관한 연구)

  • Lee, Dong-Woo;Kim, Jin-Nam;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1178-1185
    • /
    • 2010
  • Recently, high speed of container freight cars is causing fatigue damage of wheel. Sudden failure accidents cause a lot of physical and human damages. Therefore, damage analysis for wheel prevents failure accident of container freight car. Wheel receives mechanical and thermal loads at the same time while rolling stocks are run. The mechanical loads applied to wheel are classified by the horizontal load from contact of wheel and rail in curve line section and by the vertical force from rolling stocks weight. Also, braking and deceleration of rolling stocks cause repeated thermal load by wheel tread braking. Specially, braking of rolling stocks is frictional braking method that brake shoe is contacted in wheel tread by high breaking pressure. Frictional heat energy occurs on the contact surface between wheel tread and brake shoe. This braking converts kinetic energy of rolling stocks into heat energy by friction. This raises temperature rapidly and generates thermal loads in wheel and brake shoe. There mechanical and thermal loads generate crack and residual stress in wheel. Wetenkamp estimated temperature distribution of brake shoe experimentally. Donzella proposed fatigue life using thermal stress and residual stress. However, the load applied to wheel in aforementioned most researches considered thermal load and mechanical vertical load. Exact horizontal load is not considered as the load applied to wheel. Therefore, above-mentioned loading methods could not be applied to estimate actual stress applied to wheel. Therefore, this study proposed safety estimation on wheel of freight car using heat-structural coupled analysis on the basis of loading condition and stress intensity factor.

Optimization for Inspecdtion Planning of Ship Structures Considering Corrosion Effects (부식효과를 고려한 선체구조 검사계획안의 최적화)

  • Sung-Chan Kim;Jang-Ho Yoon;Yukio Fujimoto
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.137-146
    • /
    • 1999
  • Inspection becomes to be important in the safety of structure and economical viewpoint, because structural damage accompanies lots of economical cost and social problems. Especially ship structure is composed of a lot of members and it is impossible to inspect all members continuously. The purpose of this paper is to get optimal inspection plan containing inspection time and method. Crack is one of major modes on the structural failure and can lead to collapse of structure. In this paper, the deteriorating process, which contains inspection to detect the crack before the propagation to large crack, is idealized as Markov chain model. Genetic algorithm is also used to accomplish the optimization of inspection plan. Especially, the probabilistic characteristics of cracks are changed, because ship is operating in corrosive environments and the scantling of structural members is reduced due to corrosion. Non-stationary Markov chain model is used to represent the process of corrosion in structural members. In this paper, the characteristics of indivisual inspection plan are compared by numerical examples for the change of corrosion rate, the cost due to scheduled system down and target failure probability. From the numerical example, it can be seen that the improvement of fatigue life for the members with short fatigue life is the most effective way in order to reduce total maintenance cost.

  • PDF

Technology of Inspection and Real-time Displacement Monitoring on Critical Pipe for Power Plant (발전용 고온 배관의 점검 및 실시간 변위감시 기술)

  • Hyun, Jung-Seob;Heo, Jae-Sil;Cho, Sun-Young;Heo, Jeong-Yeol;Lee, Seong-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1177-1186
    • /
    • 2009
  • High temperature steam pipes of thermal power plant are subject to a severe thermal range and usually operates well into the creep range. Cyclic operation of the plant subjects the piping system to mechanical and thermal fatigue damages. Also, poor or malfunctional supports can impose massive loads or stress onto the piping system. In order to prevent the serious damage and failure of the critical piping system, various inspection methods such as visual inspection, computational analysis and on-line piping displacement monitoring were developed. 3-dimensional piping displacement monitoring system was developed with using the aluminum alloy rod and rotary encoder sensors, this system was installed and operated on the high temperature steam piping of "Y" thermal power plant successfully. It is expected that this study will contribute to the safety of piping system, which could minimize stress and extend the actual life of critical piping.