• Title/Summary/Keyword: fatigue damage parameter

Search Result 84, Processing Time 0.02 seconds

A fuzzy residual strength based fatigue life prediction method

  • Zhang, Yi
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.201-221
    • /
    • 2015
  • The fatigue damage problems are frequently encountered in the design of civil engineering structures. A realistic and accurate fatigue life prediction is quite essential to ensure the safety of engineering design. However, constructing a reliable fatigue life prediction model can be quite challenging. The use of traditional deterministic approach in predicting the fatigue life is sometimes too dangerous in the real practical designs as the method itself contains a wide range of uncertain factors. In this paper, a new fatigue life prediction method is going to be proposed where the residual strength is been utilized. Several cumulative damage models, capable of predicting the fatigue life of a structural element, are considered. Based on Miner's rule, a randomized approach is developed from a deterministic equation. The residual strength is used in a one to one transformation methodology which is used for the derivation of the fatigue life. To arrive at more robust results, fuzzy sets are introduced to model the parameter uncertainties. This leads to a convoluted fuzzy based fatigue life prediction model. The developed model is illustrated in an example analysis. The calculated results are compared with real experimental data. The applicability of this approach for a required reliability level is also discussed.

A Study of Fatigue Damage Model using Neural Networks in 2024-T3 Aluminium Alloy (신경회로망을 이용한 Al 2024-T3 합금의 피로손상모델에 관한 연구)

  • 홍순혁;조석수;주원식
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.14-21
    • /
    • 2001
  • To estimate crack growth rate and cycle ratio uniquely, many investigators have developed various kinds of mechanical parameters and theories. But, thes have produced local solution space through single parameter. Neural Networks can perform patten classification using several input and output parameters. Fatigue damage model by neural networks was used to recognize the relation between da/dN/N/N(sub)f, and half-value breadth ratio B/Bo, fractal dimension D(sub)f, and fracture mechanical parameters in 2024-T3 aluminium alloy. Learned neural networks has ability to predict both crack growth rate da/dN and cycly ratio /N/N(sub)f within engineering estimated mean error(5%).

  • PDF

Development of Empirical Formulas for Approximate Spectral Moment Based on Rain-Flow Counting Stress-Range Distribution

  • Jun, Seockhee;Park, Jun-Bum
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.257-265
    • /
    • 2021
  • Many studies have been performed to predict a reliable and accurate stress-range distribution and fatigue damage regarding the Gaussian wide-band stress response due to multi-peak waves and multiple dynamic loads. So far, most of the approximation models provide slightly inaccurate results in comparison with the rain-flow counting method as an exact solution. A step-by-step study was carried out to develop new approximate spectral moments that are close to the rain-flow counting moment, which can be used for the development of a fatigue damage model. Using the special parameters and bandwidth parameters, four kinds of parameter-based combinations were constructed and estimated using the R-squared values from regression analysis. Based on the results, four candidate empirical formulas were determined and compared with the rain-flow counting moment, probability density function, and root mean square (RMS) value for relative distance. The new approximate spectral moments were finally decided through comparison studies of eight response spectra. The new spectral moments presented in this study could play an important role in improving the accuracy of fatigue damage model development. The present study shows that the new approximate moment is a very important variable for the enhancement of Gaussian wide-band fatigue damage assessment.

Free Spanning of Offshore Pipelines by DNV

  • CHOI HAN SUK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.47-52
    • /
    • 2005
  • This paper introduces a procedure for free span and fatigue analysis of offshore pipelines per DNV-RP-F105, 2002. The new method includes the axial force and deflection load in pipelines. The screening criteria were established to calculate the allowable span lengths in the new design codes. The screening criteria allows a certain amount of vortex-induced vibration due to wave and current loading. However, the induced pipe stresses are very small and usually below the limit stresess of typical S-N curves. In contrast, the conventional criteria did not allow any vortex-induced vibration in the free span of pipelines. Thus, the screening criteria yields reduced allowable span lengths. A simplified procedure was established to calculate the fatigue damage due to long-term current distribution. The long-term current statistics was assumed with a 3-parameter Weibull distribution. The fatigue damage was estimated for the span lengths obtained from the screening criteria for various conditions. Sample calculations show the effect of axial force for various boundary conditions. Comparisons with conventional criteria are included.

Free Spanning of Offshore Pipelines by DNV 2002 (DNV 2002에 의한 해저관로의 자유경간해석)

  • Choi, Han-Suk;Joo, Joo-Kyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.29-33
    • /
    • 2002
  • A procedure of free span and fatigue analysis of offshore pipelines was made per DNV-RP-F105, 2002. The new method includes the axial force and deflection load in pipelines. The screening criteria were used to calculate the allowable span lengths. The screening criteria allow small amplitudes of vortex-induced vibration due to wave and current loading. However, the induced pipe stress is very small and usually below the limit stress of a typical S-N curve. A simplified method was established to calculate the fatigue damage due to long-term current distribution. The long-term current statistics was assumed with a 3-parameter Weibull distribution. The fatigue damage was estimated for the span lengths obtained from the screening criteria for various conditions. Sample calculations show the effect of axial force for various boundary conditions.

  • PDF

Study on Fracture Life Under Mutual Interaction of Creep and Fatigue (크리프-피로상호작용하의 파단수명에 관한 연구)

  • Cho, Yong-Ee;Kim, Hei-Song
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.97-106
    • /
    • 1993
  • This is the study on fracture life under the interaction of creep and fatigue. It is difficult to explain the interaction of the creep and fatigue with indication of frequency but the dependency of the time should be considered. The formulation of material varieties causing by interaction of creep and fatigue is required in the accumulative damage method. The strain range partition method requires some of modification corresponding to the changes in temperature and load. All of other method also comprehended with above mentioned problems. Generally, in this field, the variety of stress-strain and suitable parameter is required and connective study between the macro and micro results seems to be insufficient. The linear damage rule is acquiring the support generally but it requires modification in the hgigh temperature instruments. The variety of stress effecting on crack and variety of stress on the metallurgical side are considered to be problems in the future days.

  • PDF

입계기공의 확산성장 모델을 이용한 고온 기기의 크립균열전파해석(3)

  • Jeon, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1194-1201
    • /
    • 1996
  • For the case of creep-fatigue interaction, the damage zone developed in front of the growing crack-tip during creep regime is important because it can affect the damage mechanism to be occured by the following fatigue load. These are studied in theis paper through proper consideration of the cavitiy-size dependent sintering stress which is approximated by polynomials. It is shown that the inclination of reversed damage zone size with respect to the applied load parameter can be explained by considering realistic sintering stress distribution. However, the resultant stress field has $r^{1/2+\theta}$ singularity, regardliss of the profile of variable sintering stress, which is the same to that case solved for constant sintering stress.

Effect of Mean Stress on the Fatigue Life of Engine Mount and Life Prediction (방진고무부품 피로수명에 끼치는 평균하중의 영향 및 피로수명 예측)

  • Lee, H.J.;Kim, W.D.;Choi, B.I.;Woo, C.S.;Kim, J.Y.;Koh, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.99-104
    • /
    • 2001
  • Effect of mean stress on the fatigue life of natural rubber for engine mount was investigated. Fatigue damage parameter based on the maximum Green-Lagrange strain was employed to account for the effect of mean stress. A procedure to predict the fatigue life of rubber components based on the maximum Green-Lagrange strain method was proposed. Nonlinear finite element analysis and fatigue test of jang-gu shape specimen were conducted to predict the fatigue life of engine mount. Predicted fatigue lives have a good agreement with tested lives within a factor of 3.

  • PDF

Significance of seabed interaction on fatigue assessment of steel catenary risers in the touchdown zone

  • Elosta, Hany;Huang, Shan;Incecik, Atilla
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.403-423
    • /
    • 2016
  • The challenges involved with fatigue damage assessment of steel catenary riser (SCR) in the touchdown zone (TDZ) are primarily due to the non-linear behaviour of the SCR-seabed interaction, considerable uncertainty in SCR-seabed interaction modelling and geotechnical parameters. The issue of fatigue damage induced by the cyclic movements of the SCR with the seabed has acquired prominence with the touch down point (TDP) interaction in the TDZ. Therefore, the SCR-seabed response is critical for reliable estimation of fatigue life in the TDZ. Various design approaches pertaining to the lateral pipe-soil resistance model are discussed. These techniques have been applied in the finite element model that can be used to analyse the lateral SCR-seabed interaction under hydrodynamic loading. This study investigates the sensitivity of fatigue performance to geotechnical parameters through a parametric study. In this study, global analyses are performed to assess the influence of vertical linear seabed springs, the lateral seabed model and the non-linear seabed model, including trench evolution into seabed, seabed normalised stiffness, re-penetration offset parameter and soil suction resistance ratio, on the fatigue life of SCRs in the TDZ.

A Prediction Model for Low Cycle Fatigue Life of Pre-strained Fe-18Mn TWIP Steel (Fe-18Mn TWIP강의 Pre-strain에 따른 저주기 피로 수명 예측 모델 연구)

  • Kim, T.W.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.259-262
    • /
    • 2009
  • The influence of pre-strain in low-cycle fatigue behavior of Fe-18Mn-0.05Al-0.6C TWIP steel was studied by conducting axial strain-controlled tests. As-received plates were deformed by rolling with reduction ratios of 10 and 30%, respectively. A triangular waveform with a constant frequency of 1 Hz was employed for low cycle fatigue test at the strain amplitudes in the range of ${\pm}0.4{\sim}{\pm}0.6$ pct. The results showed that low-cycle fatigue life was strongly dependent on the amount of pre-strain as well as the strain amplitude. Increasing the amount of prestrain, the number of reversals to failure was significantly decreased at high strain amplitudes, but the effect was negilgible at low strain amplitudes. A new model for predicting fatigue life of pre-strained body has been devised adding a correction term of ${\Delta}E_{pre-strain}$ to the energy-based fatigue damage parameter.

  • PDF