• Title/Summary/Keyword: fatigue crack effect

Search Result 570, Processing Time 0.022 seconds

Effect of internal Stress on the Strength of PZT Cermics (PZT 세라믹스의 강도에 미치는 내부응력의 영향)

  • 태원필;윤여범;김송희
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.49-55
    • /
    • 1996
  • The aim of this study is to investigate the change of bending strength and fatigue strength in the unpoled and poled Pb(Zr, Ti)O3 ferroelectrics of tetragonal morphotropic phase boundary (MPM) and rhombohedral com-position in terms of internal stress which is measured by XRD method. Before poling treatment the highest bending strength was found in rhombohedral composition. After poling treatment the bending strength decreas-ed in all compositions but it decreased most remarkably in tetragonal composition. The most prominent de-crease of bending strength after poling treatment in tetragonal was attributed to the occurrence of microcracks due to highanisotropic internal stress around grain boundary which was induced of bending strength after poling in MPB and rhombohedral composition was not due to the occurrence of microcracks but to the increase in tensile internal stress perpendicular to the direction of crack propagation by domain alignment. Fatigue strength was higher before poling treatment than after poling treatment for various compositions.

  • PDF

Design of Spot Weld Based on the Durability Influence Index and the DOE Analysis (점용접부 내구 영향도 지수와 실험 계획법을 이용한 자동차 부품 점용접 설계)

  • Choi, Noo-Ri;Ju, Byeong-Hyeon;Park, Jung-Min;Eom, Jae-Sung;Byun, Hyung-Bai;Kim, Dong-Seok;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1142-1147
    • /
    • 2006
  • A practical method for reducing the number of spot welds in automotive structures considering fatigue crack initiation life is suggested. At first, an influence index for the durability and the fatigue life of a spot weld itself is defined and then taken as the main effect of the DOE analysis. Spot welds that can be removed without serious reduction of durability through numerical experiments are selected by the results of DOE. The proposed method was applied to the shock tower and LCA(lower control arm) structure of a vehicle, which are important components in durability-related point of view.

Three Point Bending Fatigue Property with Heat Treatment Condition in a Powder Metallurgical High Speed Steel JYPS-23 (분말고속도공구강 JYPS-23에서 열처리조건에 따른 3점 굽힘피로특성)

  • 홍성현;배종수;김용진
    • Journal of Powder Materials
    • /
    • v.7 no.3
    • /
    • pp.131-136
    • /
    • 2000
  • The effect of tempering temperature on the three point bending fatigue behavior of a P/M high speed steel JYPS-23 (1.28% C, 4.20% Cr, 6.40% W, 5.00% Mo, 3.10% V, bal. Fe) was investigated. The number of cycles to failure of the specimen austenitized at $1175^{\circ}C$ drastically increased with increasing tempering temperature. As tempering temperature increased from 500 to $620^{\circ}C$, the volume fraction and average size of carbides (MC or M6C) did not significantly changed, while hardness decreased drastically. The reduced hardness is due to the softening of matrix, which increased the resistance of the fatigue crack propagation. For a practical application, powder compacting test were also conducted with the P/M high speed steel punches tempered at 500, 580, and $620^{\circ}C$. The number of compacting cycles to failure of the punches also increased with increasing tempering temperature.

  • PDF

Effect of Nitriding on Fatigue Characteristics of Cr-Mo Alloy Steel (고장력 Cr-Mo강의 질화처리에 따른 피로특성)

  • Oh, Kwang Keun;Kim, Jae Hoon;Choi, Hoon Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.597-602
    • /
    • 2015
  • CrMo alloy steel was nitrided using two types of processing methods, ion-nitriding processing and nitrocarburizing. Both processes were conducted for a duration of 30 min. To compare the surface hardness of the alloys created by the different processes, microhardness tests were conducted, and fatigue tests of each material were performed by a cantilever rotary bending fatigue test machine (Yamamoto, YRB 200) in the very high cycle regime ($N>10^7cycle$). Fractography of the fractured surfaces was conducted by scanning electron microscopy - to observe the fracture mechanisms of very high cycle fatigue and the effect of the nitriding process on the fatigue characteristics.

Effect of Static Load Level of Ultrasonic Nanocrystal Surface Modification Technology on Fatigue Characteristics of SKD61 (초음파 나노 표면개질 기술의 정하중 레벨이 SKD61 강의 피로특성에 미치는 영향)

  • Suh, Chang-Min;Kim, Sung-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.99-105
    • /
    • 2008
  • Ultrasonic nanocrystal surface modification (UNSM) is a method to induce severe plastic deformation to a material surface, so that the structure of the material surface becomes a nanocrystal structure from the surface to a certain depth. It improves the mechanical properties, namely hardness, compressive residual stress, and fatigue characteristics. Specimens of SKD61 were tested to verify the effects of the variation of UNSM static load level on fatigue characteristics. The results were as follows: the grain size of SKD61 treated with UNSM became very fine from the material surface to a $100{\mu}m$ depth. The surface hardness of SKD61 was increased up to 37% after UNSM. And fatigue strength at $10^7$ cycles was increased by 8.3, 11.2, and 17.9% respectively, when the static load levels of UNSM were 4, 6, 8 kgf.

The integrity assessment of the pipeline (파이프라인의 건전성 평가)

  • 이억섭;황인현
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.25-30
    • /
    • 2000
  • The object of this work is to develop an assessment system for pipeline integrity The system consists of four module applications for internal algorithm; the effect of corrosion in pipeline, crack, stress corrosion crack (SCC) and fatigue modules. Presently, the module of the external corrosion has been developed and the internal algorithm for the effect of corrosion in pipeline and the database of the system are described in this paper, The database of the system is separated to mainly four parts; geometry of pipeline, material properties, boundary conditions and general Properties. Each components of the system are designed by user-friendly concept. This system may give a guideline for maintenance and modifications for the pipeline at the industrial sight. Furthermore, a procedure to evaluate an inspection interval is also provided.

  • PDF

The cause examination of the crack of the end beam for welding structure type bogie (용접구조형 대차 엔드빔의 균열원인 규명)

  • Hong Jai-Sung;Ham Young-Sam;Lee Dong-Hyong;Sea Jung-Won
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.726-731
    • /
    • 2004
  • Bogie is the connection device between carbody and wheel in railway vehicles. It is the core part that exert a important effect on the passenger safety and running safety. Bogie largely consists of bogie frame, suspension, brake, wheel set. Static and Dynamic load have acted on it complexly. When the bogie is designed, finite element method, static load test, fatigue test, running test should be considered. Some bogie frame of high speed railway freight car have the problem. It's end beam was cracked. The crack of the end beam have a bad effect on brake system. In that case, the cars would be in danger of derailment.

  • PDF

Development of the Delamination Evaluation Parameters (I) -The Delamination Aspect Ratio and the Delamination Shape Factors-

  • Song, Sam-Hong;Oh, Dong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1932-1940
    • /
    • 2004
  • Although the previous researches evaluated the fatigue behavior of Al/GFRP laminates using the traditional fracture mechanism, their researches were not sufficient to do it : the damage zone of Al/GFRP laminates was occurred at the delamination zone instead of the crack-metallic damages. Thus, previous researches were not applicable to the fatigue behavior of Al/GFRP laminates. The major purpose of this study was to evaluate delamination behavior using the relationship between crack length (a) and delamination width (b) in Al/GFRP laminate. The details of investigation were as follows: 1) Relationship between the crack length (a) and the delamination width (b), 2) Relationship between the delamination aspect ratio (b/a) and the delamination area rate ((A$\_$D/)/subN// (A$\_$D/)$\_$All/), 3) The effect of delamination aspect ratio (b/a) on the delamination shape factor (f$\_$s/) and the delamination growth rate (dA$\_$D// da). As results, it was known that the delamination aspect ratio (b/a) was decreased and the delamination area rate ((A$\_$D/)$\_$N// (A$\_$D/)$\_$All/) was increased as the normalized crack size (a/W) was increased. And, the delamination shape factors (f$\_$s/) of the ellipse-II(f$\_$s3/) was greater than of the ellipse-I(f$\_$s2/) but that of the triangle (f$\_$s1/) was less than of the ellipse-I(f$\_$s2/).

Consideration of Methods Evaluating the Growing Process of Stress Corrosion Cracking of the Sensitized 18-8 Austenitic Stainless Steel in High Temperature Water Based on Electric Circuit Theory: The Effects of Stress Factors

  • Tsukaue, Yasoji
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.103-111
    • /
    • 2007
  • The effect of stress factors on the growing process of stress corrosion cracking (SCC) of the sensitized 18-8 stainless steel in high temperature water was investigated using equations of crack growth rate derived from applying electric circuits to SCC corrosion paths. Three kinds of cross sections have to be considered when electric circuit is constructed using total current. The first is ion flow passage area, $S_{sol}$, of solution in crack, the second is total dissolving surface area, $S_{dis}$, of metal on electrode of crack tip and the third is dissolving cross section, $S_{met}$, of metal on grain boundary or in base metal or in welding metal. Stress may affect each area. $S_{sol}$ may depend on applied stress, $\sigma_{\infty}$, related with crack depth. $S_{dis}$ is expressed using a factor of $\varepsilon(K)$ and may depend on stress intensity factor, K only. SCC crack growth rate is ordinarily estimated using a variable of K only as stress factor. However it may be expected that SCC crack growth rate depends on both applied stress $\sigma_{\infty}$ and K or both crack depth and K from this consideration.$\varepsilon(K)$ is expressed as ${\varepsilon}(K)=h_2{\cdot}K^2+h_3{\cdot}K^3$ when $h_{2}$ and $h_{3}$ are coefficients. Also, relationships between SCC crack growth rate, da/dt and K were simulated and compared with the literature data of JBWR-VIP-04, NRC NUREG-0313 Rev.2 and SKIFS Draft. It was pointed out in CT test that the difference of distance between a point of application of force and the end of starter notch (starting point of fatigue crack) may be important to estimate SCC crack growth rate. An anode dissolution current density was quantitatively evaluated using a derived equation.

Study on the Effects of Surface Treatment and Stitching on the Fracture Behavior of Composite Laminates (계면처리와 스타칭이 복합적층판의 파괴거동에 미치는 영향 연구)

  • Hong, S.Y;Hwang, W;Park, H.C;Han, K.S
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.806-815
    • /
    • 1996
  • The interlaminar fracture behavior of woven laminates under static and cyclic loadings has been studied using DCB(double cantilever beam) specimens. The effects of surface treatment and stiching on the fracture behavior of composite laminates are investigated experimentally. Fracture toughness has been improved by surface treatment because the surface treatment can change the fracture mechanism of laminates. SCB(stitched cantilever beam) model has been proposed to quantify the effect of through-thickness resinforcement(stiching) in improving the delamination crack growth resistance. Distributed loads which are transfered to through-thickness fibers can be calculated by the SCB model. And fracture energy increase due to the distributed load can be predicted by a power function of the distributed load. A new parameter agreed well proposed predict fatigue crack growth rate. The predictions using this parameter agreed well with the experimental data.