• Title/Summary/Keyword: fatigue crack effect

Search Result 570, Processing Time 0.026 seconds

Fatigue Behavior of Catenary Wires by Environments Degradation (환경열화에 의한 가선재의 피로거동)

  • 김용기;장세기
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.14-19
    • /
    • 2004
  • The effect of surface damage on fatigue properties of catenary wires were investigated to estimate their service lift. As surface defects of the wires caused by surface corrosion increase, surface roughness gets worse, and as roughness increases, it is easy for moisture coming from rain and dew to be condensed around uneven parts of the surface. The condensed moisture causes a locally severe corrosion which leads to damage of the wires. Corrosion of catenaty wires can make their actual lifetime shorter than that originally designed. The amount of decrease was more prominent as environmental conditions became more corrosive. They are also vibrated with some amplitude everytime pantographs touch contact line. The frequent cyclic load on the wire may result in a fatigue fracture. Surface damage by corrosion can make formation of crack initiation at fatigue. In the present study, the fatigue life of the used wire was measured 35 to 50% compared with that of new one in average.

Surface crack propagation behavior and crack closure phenomena in 5083-H113 aluminum alloy (5083-H113 알루미늄合金의 表面균열進展擧動과 균열닫힘 現象)

  • 박영조;김정규;신용승;김영운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.243-252
    • /
    • 1987
  • The propagation and closure behavior of surface crack initiated at a sharply notched specimens were investigated in 5083-H113 aluminium alloy under constant amplitude of tension load by the unloading elastic compliance method. The crack shape (aspect ratio) was found to be approximately semicircular during the crack was being small and to be changed to semi-elliptical during it was being long. The propagation rate of a surface crack initiated from notch root decelerated with increasing crack length when the crack was small and then accelerated when it was large. The effect of stress ratio was large in lower .DELTA.K range, but the effective stress intensity factor range .DELTA.K$_{eff}$ was found to diminish the difference of the crack propagation rate. By considering the increase in crack closure stress with crack length and examining the microphotographs, plasticity-induced and roughness-induced crack closure mechanisms were predominant in the range of this study.y.

The intergrity assessment of buried pipeline (매설배관의 건전성 평가)

  • Lee, Ouk-Sub;Yin, Hai-Long
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.333-338
    • /
    • 2001
  • The object of this work is to develop an assessment system for pipeline integrity. The system consists of four module applications for internal algorithm; the effect of corrosion in pipeline, crack, stress corrosion crack (SCC) and fatigue modules and the effect of cavity. Presently, the module of the external corrosion has been developed and the internal algorithm for the effect of corrosion in pipeline and the database of the system are described in this paper. The database of the system is separated to mainly four parts; geometry of pipeline, material properties, boundary conditions and general properties. Each components of the system are designed by user-friendly concept. This system may give a guideline for maintenance and modifications for the pipeline at the industrial sight. Furthermore, a procedure to evaluate an inspection interval is also provided.

  • PDF

Effect of Crack Closure on the Fatigue Crack Growth Behavior of Forged AI7050-T7452 (AI7050-T7452 단조재의 피로균열성장에 대한 균열닫힘의 영향)

  • Lee, W.S.;Park, J.Y.;Lee, H.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.82-90
    • /
    • 1997
  • When a structure is made by the process of forging, it has the different mechanical properties from those it has before the process. This study is based on the crack closure phenomenon of the crack growth behavior of forged AI7050-T7452. The specimens were prepared in three kinds of forging ratio in order to find out the effects of crack closure on the forged material and compare the crack growth behavior with not-forged aluminum. COD method and strain gage method were used in measuring the crack closure stress and the results from those methods were compared each other. FEM analysis was applied to verify the effective stress intensity factor range by the superposition of the crack closure load to the crack tip. In the result of this study, the crack closure stress decreased with increasing the forging ratio due to the finer grain size and the brittle manner.

  • PDF

Effect of joint Details on Fatigue Properties of a Slot Structure

  • Youn, J.G.;Kim, H.S.;Park, D.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.51-57
    • /
    • 2001
  • Effect of the joint details on the stress distribution over a slot structure has been studied in order to improve its fatigue life using a finite element analysis. The joint details of interest are the radius and height of scallop at the stiffener as well as the mis-alignment between the stiffener and longitudinal member. For a slot structure currently used, the stiffener heel is subjected to the maximum stress for a given external load, where is a potential fatigue crack initiation site. The stresses at the stiffener heel and toe decrease both by increasing the scallop radius and more significantly by increasing the mis-alignment while no notable effect of the scallop height on it is appreciated. A proper combination of these factors makes it possible to reduce the stresses at the stiffener heel and In, theoretically, more than 50%. This is attributed to the modification of the stress distribution over the slot structure including the transition of the maximum stressed region from the stiffener heel to the slot surface of the transverse web. Such then results in a g[eat improvement of the fatigue life of the slot structure.

  • PDF

A Study on the Microstructure and Fatigue Properties of TiNi/A16061 Shape Memory Composite (TiNi/A16061 형상기억복합재료의 미세조직 및 피로특성에 관한 연구)

  • Yun, Du-Pyo;Park, Yeong-Cheol;Kim, Sun-Guk;Lee, Jun-Hui;Lee, Gyu-Chang
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.993-998
    • /
    • 1998
  • In this study TiNi/A16061 shape memory composite is introduced as one of new material using a shape memory alloy. High tensile strength of composite due to compressive residual stress in matrix by the shape memory effect of TiNi fiber can be produced. This composite can remove the tensile residual stress by the difference of coefficients of thermal expansion between fiber and matrix. one of the significant weak point of metal matrix composite. In this paper, shape memory composites are made by squeeze casting. And then, microstructure and fatigue properties of the composites by shape memory effect above inverse transformation temperature A, of TiNi alloy are discussed. The results of the fatigue crack control properties of TiNi/A16061 shape memory composite by a squeeze casting are summarized as follows the effect of fatigue crack propagation control at 363K increases according to the increase of volume fraction and prestrain in composites.

  • PDF

The Effect of Degradation on the Fretting fatigue for 1Cr-0.5Mo Steel (1Cr-0.5Mo 강의 재질열화가 프레팅 피로거동에 미치는 영향)

  • Kwon, Jae-Do;Choi, Sung-Jong;Kim, Kyung-Soo;Bae, Yong-Tak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1979-1985
    • /
    • 2003
  • Fretting is a kind of surface degradation mechanism observed in mechanical components and structures. The fretting damage decreases in 50-70% of the plain fatigue strength. This may be observed in the fossil power plant and the nuclear power plant used in special environments and various loading conditions. The thermal degradation of material is observed when the heat resisting steel is exposed for long period time at the high temperature. In the present study, the degraded 1Cr-0.5Mo steel used for long period time at high temperature (about 515$^{\circ}C$) and artificially reheat-treated materials are prepared. These materials are used for evaluating an effect of thermal aging on the fretting fatigue behavior. Through the experiment, it is found that the fretting fatigue endurance limit of the reheat-treated 1Cr-0.5Mo steel decreased about 46% from the non-fretting fatigue endurance limit, while the fretting fatigue endurance limit of the degraded 1Cr-0.5Mo steel decreased about 53% from the non-fretting fatigue endurance limit. The maximum value of fatigue endurance limit difference is observed as 57%(244 MPa) between the fretting fatigue of degraded material and non-fretting fatigue of reheat-treated material. These results can be a basic data to a structural integrity evaluation of heat resisting steel considered to thermal degradation effect.

The Effect of Low-amplitude Cycles in Flight-simulation Loading (비행하중에서 피로균열진전에 미치는 미소하중의 영향)

  • Shim, Dong-Suk;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1045-1050
    • /
    • 2003
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests are conducted on 2124-T851 aluminum alloy specimens. Three test spectra are generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results are compared with the data obtained from the flight-simulation loading. The experimental results show that omission of the load ranges below 5% of the maximum load does not significantly affect crack growth behavior, because these are below the initial stress intensity factor range. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decrease, and therefore crack growth curve deviates from the crack growth data under the flight-simulation loading. To optimize the load range that can be omitted, crack growth curves are simulated by the stochastic crack growth model. The prediction shows that the omission level can be extended to 8% of the maximum load and test time can be reduced by 59%.

  • PDF

Stress Intensity Factor Analysis for Surface Crack in Inhomogeneous Materials (비균질재료의 표면균열에 대한 응력확대계수 해석)

  • 김준수;이준성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.816-819
    • /
    • 2002
  • Accurate stress intensity factor analyses and crack growth rate of surface-cracked components in inhomogeneous materials are needed for reliable prediction of their fatigue lift and fracture strengths. This paper describes an automated system for analyzing the stress intensity factors of three-dimensional (3D) cracks in inhomogeneous materials. 3D finite element method (FEM) was used to obtain the stress intensity factor for subsurface cracks and surface cracks existing in inhomogeneous materials. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze cladding effect of subsurface cracks in inhomogeneous materials. The results were compared with those surface cracks in homogeneous materials. It is clearly demonstrated from these analyses that the stress intensity factors for subsurface cracks are less than those of surface cracks.

  • PDF

The study of fatigue crack propagation behavior in the welding residual stress field by superposition method (종첩법에 의한 용접잔류응력장에서의 피로크랙전파거동의 고찰)

  • Song, Sam-Hong;Kim, Hyun;Bae, Joon-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.47-57
    • /
    • 1994
  • This study investigates the crack propagation behavior to examine the effect of welding residual stress by the superposition method. Especially, as the crack propagation behavior is affected by the applied stress and the stress ratio in compressive residual stress filed, it is studied for three cases as follows; (1) $K_{min}$is smaller than l $K_{r}$l, (2) $K_{min}$ is smaller than l $K_{r}$l in the later stage, (3) $K_{min}$is lager than l $K_{r}$l. The resuslts show that the superposition method is very useful in all the three cases of compressive residual stress field, but is inappropriate in predicting the crack propagation behavior in tensile residual stress field.field.field.

  • PDF