• Title/Summary/Keyword: fatigue crack effect

Search Result 570, Processing Time 0.029 seconds

Effects of Alpha Phase on the Fatigue Properties of Fe-29%Ni-17%Co Low Thermal Expansion Alloy (Fe-29%Ni-17%Co 저열팽창 합금의 피로 특성에 미치는 알파상의 영향)

  • Kim, Min-Jong;Gwon, Jin-Han;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.481-487
    • /
    • 2014
  • The effect of alpha phase on the fatigue properties of Fe-29%Ni-17%Co low thermal expansion alloy was investigated. Two kinds of alloys (Base alloy and Alpha alloy) were prepared by controlling the minimal alloy composition. Microstructure observation, tensile, high-cycle fatigue, and low-cycle fatigue results were measured in this study. The Base alloy microstructure showed typical austenite ${\gamma}$ phase. Alpha alloy represented the dispersed phase in the austenite ${\gamma}$ matrix. As a result of tensile testing, Alpha alloy was found to have higher strengths (Y.S. & T.S.) and lower elongation compared to those of the Base alloy. High cycle fatigue results showed that Alpha alloy had a higher fatigue limit (360MPa) than that (330MPa) of the Base alloy. The Alpha alloy exhibited the superior high cycle fatigue property in all of the fatigue stress conditions. SEM fractography results showed that the alpha phase could act to effectively retard both fatigue crack initiation and crack propagation. In the case of low-cycle fatigue, the Base alloy had longer fatigue life in the high plastic strain amplitude region and the Alpha alloy showed better fatigue property only in the low plastic strain amplitude region. The fatigue deformation behavior of the Fe-29%Ni-17%Co alloy was also discussed as related with its microstructure.

Remaining life prediction of concrete structural components accounting for tension softening and size effects under fatigue loading

  • Murthy, A. Rama Chandra;Palani, G.S.;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.459-475
    • /
    • 2009
  • This paper presents analytical methodologies for remaining life prediction of plain concrete structural components considering tension softening and size effects. Non-linear fracture mechanics principles (NLFM) have been used for crack growth analysis and remaining life prediction. Various tension softening models such as linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate expressions. Size effect has been accounted for by modifying the Paris law, leading to a size adjusted Paris law, which gives crack length increment per cycle as a power function of the amplitude of a size adjusted stress intensity factor (SIF). Details of tension softening effects and size effect in the computation of SIF and remaining life prediction have been presented. Numerical studies have been conducted on three point bending concrete beams under constant amplitude loading. The predicted remaining life values with the combination of tension softening & size effects are in close agreement with the corresponding experimental values available in the literature for all the tension softening models.

Analysis of Heat Generation Mechanism in Ultrasound Infrared Thermography (초음파-적외선 열화상 기법에 의한 피로균열 검출에 있어 발열 메커니즘 분석)

  • Choi, Man-Yong;Lee, Seung-Seok;Park, Jeong-Hak;Kim, Won-Tae;Kang, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.10-14
    • /
    • 2009
  • Heat generation mechanism of ultrasound infrared thermography is still not well understood, yet and there are two reliable assumptions of heat generation, friction and thermo-mechanical effect. This paper investigates the principal cause of heat generation at fatigue crack with experimental and numerical approach. Our results show most of heat generation is contributed by friction between crack interface and thermo-mechanical effect is a negligible quantity.

A Study on fatigue Properties with Different Edge Margin for Hole Expansion Plate (홀 확장된 판재의 에지마진 변화에 따른 피로특성 연구)

  • Lee, Joon-Hyun;Lee, Dong-Suk;Lee, Hwan-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2383-2389
    • /
    • 2002
  • This paper describes an experimental study on fatigue life extension by using cold working process in fastener hole of aircraft structure. Cold working process was applied for A12024-7351 specimens by considering the effect of edge margin on fatigue life. It is generally recognized that cold working process offers a protective zone around fastener hole of aluminum aircraft structure due to the residual compressive stresses which lead to retardation of crack growth. Thus this process provides the beneficial effect of increasing the fatigue life of the component. there by decreasing maintenance costs. It has also been successfully incorporated into damage tolerance and structural integrity programs. Cold working specimens were tested at constant amplitude peak cyclic stresses. Fatigue life of cold working specimen compared with that of specimen fabricated with base material. The increase of fatigue life for cold working specimen is discussed by both considering the effect of residual compressive stresses measured by X-ray diffraction technique and quantitative effect of edge margin.

Method of Friction Energy Dissipation and Crack Analysis under Partial Slip (부분 미끄럼 상태에서의 마찰에너지 방출 및 균열해석 방법)

  • 김형규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.38-46
    • /
    • 1999
  • Numerical methods are procured for evaluating the contact stresses, the dissipation of friction energy density and the fatigue cracking emanated from the contact surface under the partial slip condition. A rounded punch is used for the indenter pressing and slipping on the elastic half plane. Plane strain condition is assumed for the present analysis. Several sample calculations are carried out to investigate the effect of the punch roundness, the shear load path, and the crack obliquity and closure on the failure. It is found that the present methods can be a useful tool for studying the physical failure of the of the contacting materials such as fretting wear and fretting fatigue cracking.

  • PDF

Development of an Approximate Model for Ultrasonic Evaluation of Small Surface Fatigue Cracks (작은 피로 균열의 초음파 평가를 위한 근사 모델의 개발)

  • Kang, Kae-Myung;Kim, Jin-Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.46-50
    • /
    • 2000
  • A theoretical model for the evaluation of small surface fatigue crack initiated from a pit-type surface flaw is presented. The low frequency scattering model is developed based on the reciprocity principle for the elastic wave scattering. The effect of the flaw on the surface wave reflection from the crack is taken into account approximately by means of the stress intensity factor of cracks on a through thickness hole. The reflection coefficient of surface wave is derived for the prediction of small surface crack depth. Calculated results for pits with different sizes are illustrated.

  • PDF

A Study on Fatigue Crack Growth Behavior and R-Curve Characteristics of Gas Piping Material (가스배관재의 피로균열진전거동과 파괴저항특성곡선에 관한 연구)

  • Son, J.D.;Lim, M.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.127-133
    • /
    • 2007
  • SG-365 steel is an important material and used for manufacturing a pressure vessel which the gas piping. In this investigation, the elastic plastic fracture toughness of this material is evaluated by the unloading compliance method according to the ASTM E813-97 and E1152-97 method on the smooth and side groove 1CT specimens. The effect of smooth and side groove is studied on the elastic plastic fracture toughness. The side grooved specimen is very useful in estimation of the $J_{IC}$. It is much easier than the smooth specimen to the onset of the ductile tearing by the R curve method. Besides, it improves the accuracy of toughness values, decreases a phenomenon of the tunneling and shear lip by the side groove.

  • PDF

Effect of Low Temperature and Single Overload on Fatigue Crack Growth Behavior of Cr-Mo Steel Weldments (Cr-Mo강 용접부의 피로균열 성장거동에 미치는 저온도와 단일과대하중의 영향)

  • Lim, Jae Kyoo
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.79-89
    • /
    • 1996
  • 일정진폭하중과 과대하중비 2.5의 단일 인장과대하중에 의한 4140강 용접부 의 피로균열성장거동을 실온과 -45.deg.C의 저온에서 피로시험과 파면관찰을 통하여 고찰하였다. 이때, 용접부 미시조직의 영향을 평가하기 위해 모재(parent metal), 열영향부(as-welded HAZ), 열처리된 열영향부(PWHT HAZ)로 나누어 응력비 0과 0.5로 CT시험편을 이용하여 피로시험을 실시하였다. 피로균열성장거동은 재료의 미시조직과 온도변화보다는 응력비에 크게 영향을 받았으며, 단일 과대하중에 의한 피로균열성장 지연효과가 모든 재료에서 상당히 크게 나타났다. 전자현미경에 의한 피로파면 관찰 결과, 실온에서는 연성의 스트라이에이숀과 -45.deg.C에서는 의벽개파면과 같은 피로 균열성장거동을 나타내고 있다.

  • PDF

Effect of Boundary Conditions on Reliability and Cumulative Distribution Characteristics of Fatigue Failure Life in Magnesium Alloy (마그네슘합금의 피로파손수명의 누적확률분포특성과 신뢰성에 미치는 경계조건의 영향)

  • Choi, Seon-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.594-599
    • /
    • 2011
  • In this paper, the effect of the boundary conditions on the reliability and the cumulative distribution characteristics of the fatigue failure life is analyzed in a magnesium alloy AZ31. The boundary conditions are specimen thickness, stress ratio, and maximum fatigue load. The statistical data of the fatigue failure life are obtained by fatigue crack propagation tests under the detail conditions for each boundary condition. The 3-parameter Weibull distribution is used to analyze a statistical characteristics of the fatigue failure life in magnesium alloy AZ31. It is found that the statistical fatigue failure life is long in the case of a thicker specimen, a larger stress ratio, and a smaller maximum fatigue load. Under the opposite cases, the reliability on the fatigue failure life is rapidly dropped.

A Study on Statistical Nature of Fatigue Fracture Toughness (피로파괴 인성치의 통계적 성질에 관한 연구)

  • 오환교;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2894-2901
    • /
    • 1994
  • Many researchers presented a probabilistic and statistical property of the material strength. However, the study on probabilistic and statistical property of fatigue fracture toughness has not been nearly presented. Major objectives in this paper are to compare the statistical test results of fatigue fracture toughness with those obtained in the tensile experiments, and to recognize the size effect for the probabilistic and statistical property by using specimens with various thickness.