• Title/Summary/Keyword: fatigue crack effect

Search Result 570, Processing Time 0.027 seconds

A Fracture Mechanics Study on the Fatigue Crack Propagation of the Pressure Vessel Pad Weldment (압력용기 패드부의 피로균열진전에 관한 파괴력학적 연구)

  • 차용훈;김하식
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.10-15
    • /
    • 1996
  • In studying the fatigue strength of fillet welded the section of pressure vessel pad, this study was to evaluate the effect of weld toe notch and to compare the results of numerical analysis with the results of fatigue experiments of fillet welded A5l6 grade 60 steel specimens. The fatigue life for the Bead welded specimen was about 1.4 times as much it as the 1Pad welded specimen. Also, The fatigue life for the 2Pad welded specimen was about 1.5 times as much it as the 1Pad welded specimen. In $da/dN-{\Delta}K$ curve, the fatigue crack growth rate for the 1Pad welded specimen appeared higher than that of the 2Pad welded specimen in the same initial region of ${\Delta}K$, had a similar Inclination In the stabled region.

  • PDF

Effect of Al Addition on Fatigue Properties of Austenitic Fe-25Mn-Al-0.5C steels (오스테나이트계 Fe-25Mn-Al-0.5C강의 피로성질에 미치는 Al 첨가의 영향)

  • Do, Jeong-Ho;Jeon, Chae-Hong;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.274-282
    • /
    • 1998
  • The effect of Al addition on the fatigue properties of austenitic Fe-25Mn-Al-0.5C steels was studied. When Al was not added to the Fe-25Mn 0.5C steel, the strain induced ${\varepsilon}$ martensites, deformation twins and slip bands were formed during fatigue deformation. When 2wt% of Al was added to the steel, the deformation twins and slip bands were formed during fatigue deformation. When 5wt% of Al was added, only slip bands were formed. In low cycle fatigue test, the alloys containing 0wt% and 2wt%Al showed the cyclic hardening due to ${\varepsilon}$ martensites and deformation twins, resulting in shorter fatigue lives than the alloy containing 5wt%Al. In fatigue crack propagation test, the alloy without Al showed the highest crack propagation rate. The fracture surface of the alloy without Al was flat, whereas that of the alloy with 2% or 5%Al was rough. The ${\Delta}K_{th}$, values of the alloys with 0%, 2% and 5%Al were 16, 17.5, and $20.5MPam^{1/2}$, respectively.

  • PDF

The Variation of Stress Concentration Factor and Crack Initiation Behavior on the Hole Defects Around the Rivet Hole in a Aircraft Materials (항공재료 리벳홀에 인접한 원공결함의 위치에 따른 응력집중계수의 변화와 균열발생거동)

  • Song, Sam-Hong;Kim, Cheol-Woong;Kim, Tae-Soo;Hwang, Jin-Woo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.381-388
    • /
    • 2003
  • The material deficiencies in the form of pre-existing defects can initiated cracks and fractures. The stress distribution and fatigue crack initiation life of engineering materials may be associated with the size, the shape and the relative location of defects contained in the component. The objective of this study is to investigate the effect of arbitrarily located hole defect around the rivet hole of a wing section in monolithic aluminum and Al/GFRP laminates under cyclic bending moment during a service load. The stress distribution and the fatigue crack initiation behavior near a rivet hole of on the relationships between stress concentration factor ($K_t$) and relative position of defects were considered. The test results indicated the features of different stress field. Therefore, the stress concentration factor ($K_t$) and the fatigue crack initiation behavior was illustrated different behavior according to each position of hole defect around the rivet hole in monolithic aluminum and Al/GFRP laminates.

  • PDF

The Analysis of Fatigue Behavior Using the Delamination Growth Rate(dAD/da) and Fiber Bridging Effect Factor(FBE) in Al/GERP Laminates (층간분리성장률(dAD/da)과 섬유가교효과인자(FBE)를 이용한 Al/GFRP 적층재의 피로거동 해석)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.317-326
    • /
    • 2003
  • The influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al/GFRP laminate such as the wing section was investigated. The main objective of this study was to evaluate the relationship between crack profile and delamination behavior. And a propose parameter on the delamination growth rate(d $A_{D}$/da) of Al/GFRP laminates with a saw-cut using relationship between delamination area( $A_{D}$) and cycles(N), crack length(a), stress intensity factor range($\Delta$K). Also, the fiber bridging effect factor( $F_{BE}$ ) was propose that the fiber bridging modification factor($\beta$$_{fb}$ ) to evaluate using the delamination growth rate(d $A_{D}$/da). The shape and size of the delamination zone formed along the fatigue crack between aluminum alloy sheet. Class fiber-adhesive layer were measured by an ultrasonic C-scan image. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip. It represents that relationship between crack length and delamination growth rate(d $A_{D}$/da) were interdependent by reciprocal action, therefore it's applicable present a model for the delamination growth rate(dA/sib D//da) in Al/GFRP laminates.minates.s.

Effect of Stress Ratio and Anisotropy on Fatigue Crack Propagation Behavior of AZ31B Magnesium Alloy (AZ31B 마그네슘합금의 피로균열성장에 미치는 응력비 및 이방성의 영향)

  • Kim, K.S.;Kim, M.K.;Kim, H.K.;Kim, C.O.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.39-44
    • /
    • 2011
  • This study was to investigate the effects of stress ratio and anisotropy on Fatigue Crack Propagation(FCP) behavior of rolled magnesium alloy AZ31B. The experimental materials were a Mg-Al-Zn magnesium alloy. The FCP test was conducted on compact tension specimen by a servo-hydraulic fatigue testing machine in air at room temperature. Compact tension specimens were prepared from the extruded parallel and vertical rolling direction. The test condition was frequency of 10Hz and sinusoidal load stress ratios are 0.1 and 0.7. The FCP rates was automatically measured by a compliance method. In the case of the FCP of AZ31B, the FCP of both direction of LT and TL by anisotropy of specimens are almost same value. In lower stress ratio, the FCP of the LT, TL specimens are increased in lower ${\Delta}K$ region but higher ${\Delta}K$ regions are almost same value. Finally, the result of observed the surface crack, it expressed the quasi-cleavage fracture in lower ${\Delta}K$ region and straight mark on the aspect of the facet in high ${\Delta}K$ region.

A Study on the Delayed-Retardation of Fatigue Crack Growth Following Single Peak Overload (단일과대하중에 의한 피로균열추전의 지대지연현상에 관한 연구)

  • 오세욱;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1186-1192
    • /
    • 1990
  • It is well known that the fatigue crack growth retardation following overloads can be estimated reasonably well by the models of Wheeler and Willenborg. These models, however, can not explain the delayed-retardation revealed by every experimental result. This means that they necessarily have some qualitative defects in themselves despite of a fair approximation of quantity. In fact, they did not take into account the effects of the compressive portion of the overload cycle such as the change of reversed plastic zone size. The present study is focused on the acceleration effect in the reversed plastic zone in order to analyze qualitatively delayed-retardation phenomenon following single peak overload on the fatigue crack growth behavior using 2024-T3 aluminum alloy.

A Study on the Effect of the Stop-hole on the Fatigue Crack Growth Rates in Tensile Members (인장부재(引張部材)에 뚫은 Stop-hole 이 피로균열성장율(疲勞龜裂成長率)에 미치는 영향(影響)에 관한 연구(研究))

  • Chang, Dong Il;Jung, Kyoung Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.115-124
    • /
    • 1987
  • Stop-hole method is one of the conventional methods for the temporary repair or reinforcement of the member in the case that the structural steel member has a fatigue crack. In this study, the stop-hole method. have been estimated quantitatively in terms of survival life time of the side edge cracked specimen. For this purpose, fatigue tests have been performed on the test specimens and the fatigue crack growth rates of the structural steel (SS41) members have been measured under load of constant amplitude. The results of this experiment show that it is desirable to use the stop-hole method before the crack reaches the region of elasto-plastic behaviour.

  • PDF

Influence of laser peening on fatigue crack initiation of notched aluminum plates

  • Granados-Alejo, Vignaud;Rubio-Gonzalez, Carlos;Parra-Torres, Yazmin;Banderas, J. Antonio;Gomez-Rosas, Gilberto
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.739-748
    • /
    • 2017
  • Notches such as slots are typical geometric features on mechanical components that promote fatigue crack initiation. Unlike for components with open hole type notches, there are no conventional treatments to enhance fatigue behavior of components with slots. In this work we evaluate the viability of applying laser shock peening (LSP) to extend the fatigue life of 6061-T6 aluminum components with slots. The feasibility of using LSP is evaluated not only on damage free notched specimens, but also on samples with previous fatigue damage. For the LSP treatment a convergent lens was used to deliver 0.85 J and 6 ns laser pulses 1.5 mm in diameter by a Q-switch Nd: YAG laser, operating at 10 Hz with 1064 nm of wavelength. Residual stress distribution was assessed by the hole drilling method. A fatigue analysis of the notched specimens was conducted using the commercial code FE-Safe and different multiaxial fatigue criteria to predict fatigue lives of samples with and without LSP. The residual stress field produced by the LSP process was estimated by a finite element simulation of the process. A good comparison of the predicted and experimental fatigue lives was observed. The beneficial effect of LSP in extending fatigue life of notched components with and without previous damage is demonstrated.

Correlation between Overload Retardation and Hardening Exponent (과부하로 인한 균열지연과 변형경화지수와의 상호관계)

  • Sang-Chul,Kim;Jin-Man,Jeong;Moon-Sik,Han
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.41-48
    • /
    • 1989
  • This paper investigates the relationship between strain hardening exponents(n) of various marine materials and fatigue crack retardation effect after applying single overload. Using the four different sheet materials, following results are obtained. (1) The fatigue crack propagation rate after applying single overload was retarded and the effects of this retardation were closely related to the strain hardening exponent. (2) The larger the strain hardening exponents were, the more were the fatigue crack retardation effects after applying single overload. (3) The considerable crack closure with the applying of a overload was observed in matrals with large strain hardening exponent. When n is smaller than 0.1, the fatigue crack retardation effects are negligible. On the contrary, when n is larger than 0.2 the fatigue crack retardation effects are significant.

  • PDF

The Fatigue Crack Growth Behavior of Concrete (콘크리트의 피로균열 성장거동에 관한 연구)

  • 김진근;김윤용
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.127-135
    • /
    • 1997
  • In this study, the wedge splitting tcst (WST) was carried out for the fatigue wack growth behavior of concrete. Selected test variables were concrete compressive strength of 28, 60 and 118 MI%, and stress ratio with 2 levels (6. 13%). In oder to make the designed stress ratio, the maximum and thr minimum fatigue loading level were 75-85% and 5- 10% of ultimate static load, respectively. Fatigue testing was preceded by crack mout.h opening displacement (CMOI)) compliance calibration tcst, and then the fatigue crack growth was computed by crack lcngth vs. (lMOI) compliance relations acquisited by the CMOD compliance calibration technique. To evaluate thc validity of CMOD compliancc calibration techniquc, the crack length p~mlicted by this method was cornpard with the crack length by linear elastic fracture mechanics(LEFIbl) and dyeing test. On the basis of the experimental results, a LRFhl-based c.mpirica1 model for f'at,igue crack growth rate(da/dN-AKI relationships) was presented. The fat,igut. crack growth ratc increased with the strength of concwtc. It appcars that t.he da/tiN-AKI relationships was influenced by stress ratio, however, the effect is diminished with an increase of strength. The comparisons between CblOl) compliance calibration technique anti the other. methods gave the validity of' ('MOD compliance calibration technique for the LZXT.