• Title/Summary/Keyword: fast-curing grout

Search Result 3, Processing Time 0.019 seconds

A Study on the Hardening Characteristics of Ground Injection Grout under Various Curing Conditions (다양한 양생조건에서 지반주입 그라우트의 경화특성에 대한 연구)

  • Heo, Hyungseok;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.11
    • /
    • pp.11-20
    • /
    • 2020
  • For water barrier and reinforcing grout in soft ground, the verification of durability was conducted over the initial and long-term ages under various curing conditions. The grout was made of water glass system, fast-hardening mineral (FHM) system, and acrylic polymer system. There were three types of curing conditions that were tab water curing, artificial seawater curing, and atmospheric curing. And the various tests were performed for each sample by age, uniaxial compressive strength, length change, and weight change. As artificial seawater, MgCl2 and MgSO4 aqueous solutions were prepared and used, respectively. As the test results, the fast-hardening mineral system and acrylic polymer system were cured stably without significant change in durability in tap water and artificial sea water, whereas water glass system showed a very rapid drop in durability under artificial sea water conditions compared to tap water. In atmospheric curing conditions, durability is lowered compared to water curing in all cases, and in particular, the weight loss in the FHM system and water glass system is about 62% and 60%, respectively, resulting in a significant decrease in durability.

Shear strength behaviors of grouts under the blasting induced vibrations

  • Sagong, Myung;Choi, Il Yoon;Lee, Jun S.;Cho, Chung-sik
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.207-213
    • /
    • 2020
  • Umbrella Arch Method (UAM) often employed in the tunnel construction under poor rock mass conditions in Korea. Insertion of steel pipes at the periphery of the tunnel and infiltration of grouts along the pipes into the rock masses increases tunnel stability. There are two major effects of grouts expected at the tunnel face: 1) increase of face stability by enhancing the frictional resistance of discontinuities and 2) decrease of permeability along the rock masses. Increase of resistance and decrease of permeability requires a certain curing time for the grout. In Korea, we require 24 hours for curing of grout, which means no progress of excavation for 24 hours after infiltration of grouts. This step delays the tunnel construction sequences. To eliminate such inefficiency, we propose MTG (Method for Tunnel construction using Grouting technology), which uses extended length of steel pipes (14 m) compared to conventional pipe roof method (12 m). The merit of MTG is the reduction of curing time. Because of the approximately 2 m extension of the length of steel pipe, blasting can be done after infiltration of grouting. For this paper, we conducted experiments on the shear strength behaviors of grout infilled rock joint with elapsing of curing time and blasting induced vibration. The results show that blasting induced vibration under MTG does not influence the mechanical features of grout material, which indicates no influence on the mechanical behaviors of grout, contributing to the stability of tunnels during excavation. This result indicates that MTG is a cost effective and fast construction method for tunneling in Korea.

Grouting diffusion mechanism in an oblique crack in rock masses considering temporal and spatial variation of viscosity of fast-curing grouts

  • Huang, Shuling;Pei, Qitao;Ding, Xiuli;Zhang, Yuting;Liu, Dengxue;He, Jun;Bian, Kang
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.151-163
    • /
    • 2020
  • Grouting method is an effective way of reinforcing cracked rock masses and plugging water gushing. Current grouting diffusion models are generally developed for horizontal cracks, which is contradictory to the fact that the crack generally occurs in rock masses with irregular spatial distribution characteristics in real underground environments. To solve this problem, this study selected a cement-sodium silicate slurry (C-S slurry) generally used in engineering as a fast-curing grouting material and regarded the C-S slurry as a Bingham fluid with time-varying viscosity for analysis. Based on the theory of fluid mechanics, and by simultaneously considering the deadweight of slurry and characteristics of non-uniform spatial distribution of viscosity of fast-curing grouts, a theoretical model of slurry diffusion in an oblique crack in rock masses at constant grouting rate was established. Moreover, the viscosity and pressure distribution equations in the slurry diffusion zone were deduced, thus quantifying the relationship between grouting pressure, grouting time, and slurry diffusion distance. On this basis, by using a 3-d finite element program in multi-field coupled software Comsol, the numerical simulation results were compared with theoretical calculation values, further verifying the effectiveness of the theoretical model. In addition, through the analysis of two engineering case studies, the theoretical calculations and measured slurry diffusion radius were compared, to evaluate the application effects of the model in engineering practice. Finally, by using the established theoretical model, the influence of cracking in rock masses on the diffusion characteristics of slurry was analysed. The results demonstrate that the inclination angle of the crack in rock masses and azimuth angle of slurry diffusion affect slurry diffusion characteristics. More attention should be paid to the actual grouting process. The results can provide references for determining grouting parameters of fast-curing grouts in engineering practice.