• Title/Summary/Keyword: fast time-varying channels

Search Result 17, Processing Time 0.024 seconds

A Frequency Domain Equalization Algorithm for Fast Time-Varying Fading Channels

  • Tran, Le-Nam;Hong, Een-Kee;Liu, Huaping
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.473-479
    • /
    • 2009
  • Conventional frequency domain equalization (FDE) schemes were originally devised for quasi-static channels. Thus, such equalization schemes could suffer from significant performance degradation in fast-fading channels. This paper proposes a frequency domain equalization algorithm to mitigate the effect of fast time-varying fading. First, a mathematical expression is derived to quantify the total interference resulting from the time variation of the channel. Then, the proposed approach attempts to eliminate the effect of time-variations of the channel. This cancellation allows efficient use of the classical FDE structures in fast time-varying fading environments, although they are built upon the quasi-static channel model. Simulation results of bit-error-rate performance are provided to demonstrate the effectiveness of the proposed algorithm.

Regularized LS Signal Detection for OFDM in Fast Time Varying Channels (고속 시변 채널 OFDM을 위한 안정화된 LS 신호검출)

  • Lim, Dongmin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.83-85
    • /
    • 2016
  • The OFDM with LS signal detection performs worse in fast time varying channels as the channel matrix has higher chance of becoming ill-conditioned. Various regularization methods are applied to avoid performance degradation in LS signal detection. In this paper, we proposed a CGLS method with the stopping criteria imposed by the characteristics of the modulation method, which shows performance comparable to that of the optimal LMMSE.

Independent Component Analysis Based MIMO Transceiver With Improved Performance In Time Varying Wireless Channels

  • Uddin, Zahoor;Ahmad, Ayaz;Iqbal, Muhammad;Shah, Nadir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2435-2453
    • /
    • 2015
  • Independent component analysis (ICA) is a signal processing technique used for un-mixing of the mixed recorded signals. In wireless communication, ICA is mainly used in multiple input multiple output (MIMO) systems. Most of the existing work regarding the ICA applications in MIMO systems assumed static or quasi static wireless channels. Performance of the ICA algorithms degrades in case of time varying wireless channels and is further degraded if the data block lengths are reduced to get the quasi stationarity. In this paper, we propose an ICA based MIMO transceiver that performs well in time varying wireless channels, even for smaller data blocks. Simulation is performed over quadrature amplitude modulated (QAM) signals. Results show that the proposed transceiver system outperforms the existing MIMO system utilizing the FastICA and the OBAICA algorithms in both the transceiver systems for time varying wireless channels. Performance improvement is observed for different data blocks lengths and signal to noise ratios (SNRs).

Pilot Symbol Assisted Low Complexity LS Channel Estimation for OFDM in Fast Time Varying Channels (고속 시변 채널 OFDM을 위한 파일럿 심볼을 이용한 저복잡도 LS 채널 예측)

  • Lim, Dong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.17-21
    • /
    • 2011
  • In this paper, we propose a pilot symbol assisted low complexity LS channel estimation method for OFDM in fast time varying channels. The proposed method shows low complexity characteristics in terms of memory space and processing time compared with conventional BEM channel model LS estimation methods.

Equalization of Time-Varying Channels using a Recurrent Neural Network Trained with Kalman Filters (칼만필터로 훈련되는 순환신경망을 이용한 시변채널 등화)

  • 최종수;권오신
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.917-924
    • /
    • 2003
  • Recurrent neural networks have been successfully applied to communications channel equalization. Major disadvantages of gradient-based learning algorithms commonly employed to train recurrent neural networks are slow convergence rates and long training sequences required for satisfactory performance. In a high-speed communications system, fast convergence speed and short training symbols are essential. We propose decision feedback equalizers using a recurrent neural network trained with Kalman filtering algorithms. The main features of the proposed recurrent neural equalizers, utilizing extended Kalman filter (EKF) and unscented Kalman filter (UKF), are fast convergence rates and good performance using relatively short training symbols. Experimental results for two time-varying channels are presented to evaluate the performance of the proposed approaches over a conventional recurrent neural equalizer.

A Time-Varying Modified MMSE Detector for Multirate CDMA Signals in Fast Rayleigh Fading Channels

  • Jeong, Kil-Soo;Yokoyama, Mitsuo;Uehara, Hideyuki
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.143-152
    • /
    • 2007
  • In this paper, we propose a time-varying modified minimum mean-squared error (MMSE) detector for the detection of higher data rate signals in a multirate asynchronous code-division multiple-access (CDMA) system which is signaled in a fast Rayleigh fading channel. The interference viewed by a higher data rate symbol will be periodic due to the presence of a lower data rate symbol which spans multiple higher data rate symbols. The detection is carried out on the basis of a modified MMSE criterion which incorporates differential detection and the ratio of channel coefficients in two consecutive observation intervals inherently compensating the fast variation of the channel due to fading. The numerical results obtained by the MMSE detector with time-varying detection show around 3 dB (M=2) and 6 dB (M=4) performance improvement at a BER of $10^{-3}$ in the AWGN channel, while introducing more computational complexity than the MMSE detector without time-varying detection. At a higher $E_b/N_0$, the proposed scheme can achieve a BER of approximately $10^{-3}$ in the presence of fast channel variation which is an improvement over other schemes.

  • PDF

Channel Estimation for OFDM Systems under Non-Sampled Space and Fast Time-Varying Channels (비 샘플 간격을 갖는 빠른 시변 채널 환경에서의 OFDM 시스템을 위한 채널 추정 기법)

  • 김동주;정성순;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.238-246
    • /
    • 2004
  • In this paper, an estimator that take advantages of time and frequency correlation within an OFDM symbol is investigated. OFDM systems using the proposed estimator can be very effective in detecting signals under non-sampled space and time-varying channels. Also, under same complexity, the proposed estimator outperforms the previously proposed estimator. Since even if there are no assumption about channel correlation, the linear interpolation method instead of optimal interpolation using correct channel correlation is proposed in case the receiver does not know the channel correlation function in time domain. Therefore the proposed channel estimator help improving the performance of OFDM systems under non-sampled spaced and fast time-varying channels.

Soft-Decision for Differential Amplify-and-Forward over Time-Varying Relaying Channel

  • Gao, Fengyue;Kong, Lei;Dong, Feihong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1131-1143
    • /
    • 2016
  • Differential detection schemes do not require any channel estimation, which can be employed under user mobility with low computational complexity. In this work, a soft-input soft-output (SISO) differential detection algorithm is proposed for amplify-and-forward (AF) over time-varying relaying channels based cooperative communications system. Furthermore, maximum-likelihood (ML) detector for M-ary differential Phase-shift keying (DPSK) is derived to calculate a posteriori probabilities (APP) of information bits. In addition, when the SISO is exploited in conjunction with channel decoding, iterative detection and decoding approach by exchanging extrinsic information with outer code is obtained. Finally, simulation results show that the proposed non-coherent approach improves detection performance significantly. In particular, the system can obtain greater performance gain under fast-fading channels.

Iterative Channel Estimation for MIMO-OFDM System in Fast Time-Varying Channels

  • Yang, Lihua;Yang, Longxiang;Liang, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4240-4258
    • /
    • 2016
  • A practical iterative channel estimation technique is proposed for the multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system in the high-speed mobile environment, such as high speed railway scenario. In the iterative algorithm, the Kalman filter and data detection are jointed to estimate the time-varying channel, where the detection error is considered as part of the noise in the Kalman recursion in each iteration to reduce the effect of the detection error propagation. Moreover, the employed Kalman filter is from the canonical state space model, which does not include the parameters of the autoregressive (AR) model, so the proposed method does not need to estimate the parameters of AR model, whose accuracy affects the convergence speed. Simulation results show that the proposed method is robust to the fast time-varying channel, and it can obtain more gains compared with the available methods.

Performance Improvement of Low Complexity LS Channel Estimation for OFDM in Fast Time Varying Channels (고속 시변 채널 OFDM을 위한 저복잡도 LS 채널 예측의 성능 개선)

  • Lim, Dong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.25-32
    • /
    • 2012
  • In this paper, we propose a method for improving the performance of low complexity LS channel estimation for OFDM in fast time varying channels. The CE-BEM channel model used for the low complexity LS channel estimation has a problem on its own and deteriorates channel estimation performance. In this paper, we first use time domain windowing in order to remove the effect of ICI caused by data symbols. Then samples are taken from the results of the LS channel estimation and the effects of the windowing are removed from them. For resolving the defect of CE-BEM, the channel responses are recovered by interpolating the resultant samples with DPSS employed as basis functions the characteristics of which is well matched to the time variation of the channel. Computer simulations show that the proposed channel estimation method gives rise to performance improvement over conventional methods especially when channel variation is very fast and confirm that not only which type of functions is selected for the basis but how many functions are used for the basis is another key factor to performance improvement.