• Title/Summary/Keyword: fast sintering

Search Result 58, Processing Time 0.024 seconds

Linear and Nonlinear Dielectric Ceramics for High-Power Energy Storage Capacitor Applications

  • Peddigari, Mahesh;Palneedi, Haribabu;Hwang, Geon-Tae;Ryu, Jungho
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.1-23
    • /
    • 2019
  • Dielectric materials with inherently high power densities and fast discharge rates are particularly suitable for pulsed power capacitors. The ongoing multifaceted efforts on developing these capacitors are focused on improving their energy density and storage efficiency, as well as ensuring their reliable operation over long periods, including under harsh environments. This review article summarizes the studies that have been conducted to date on the development of high-performance dielectric ceramics for employment in pulsed power capacitors. The energy storage characteristics of various lead-based and lead-free ceramics belonging to linear and nonlinear dielectrics are discussed. Various strategies such as mechanical confinement, self-confinement, core-shell structuring, glass incorporation, chemical modifications, and special sintering routes have been adopted to tailor the electrical properties and energy storage performances of dielectric ceramics. In addition, this review article highlights the challenges and opportunities associated with the development of pulsed power capacitors.

Mechanical performance of additively manufactured austenitic 316L stainless steel

  • Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.244-254
    • /
    • 2022
  • For tensile tests, Vickers hardness tests and microstructure tests, plate-type and box-type specimens of austenitic 316L stainless steels were produced by a conventional machining (CM) process as well as two additive manufacturing processes such as direct metal laser sintering (DMLS) and direct metal tooling (DMT). The specimens were irradiated up to a fast neutron fluence of 3.3 × 109 n/cm2 at a neutron irradiation facility. Mechanical performance of the unirradiated and irradiated specimens were investigated at room temperature and 300 ℃, respectively. The tensile strengths of the DMLS, DMT and CM 316L specimens are in descending order but the elongations are in reverse order, regardless of irradiation and temperature. The ratio of Vickers hardness to ultimate tensile strength was derived to be between 3.21 and 4.01. The additive manufacturing processes exhibit suitable mechanical performance, comparing the tensile strengths and elongations of the conventional machining process.

Synthesis of Titanium Silicide by Electro-Discharge-Sintering of Ti and Si Powder Mixture (Ti 및 Si 혼합 분말의 전기방전소결에 의한 Titanium Silicide의 합성 연구)

  • Cheon Y. W.;Oh N. H.;Kim Y. H.;Byun C. S.;Lee S. H.;Lee W. H.
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.447-452
    • /
    • 2005
  • The synthesis and consolidation of titanium silicide by electro-discharge-sintering has been investigated. As-received Ti powder was in flaky shape and the mean particle size was $45.0{\mu}m$, whereas the mean particle size of the pre-milled Si powder with angular shape was $8.0{\mu}m$. Single pulse of 2.5 to 5.0 kJ/0.34g-elemental Ti and pre-milled Si powder mixture with the composition of $Ti-37.5at.\%$ Si was applied using $300{\mu}F$ capacitor. The solid with $Ti_5Si_3$ phase has been successfully fabricated by the discharge with the input energy more than 2.5kJ in less than $129{\mu}sec.$ Hv values were found to be higher than $1000kgf/mm^2$. The formation of $Ti_5Si_3$ occurred through a fast solid state diffusion reaction.

Influence of Flowability of Ceramic Tile Granule Powders on Sintering Behavior of Relief Ceramic Tile (과립분말 유동성 변화가 부조세라믹타일의 소결거동에 미치는 영향)

  • Shin, Cheol;Choi, Jung-Hoon;Kim, Jung-Hun;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.550-557
    • /
    • 2020
  • Used in the ceramic tile market as a representative building material, relief ceramic tile is showing increased demand recently. Since ceramic tiles are manufactured through a sintering process at over 1,000 ℃ after uniaxial compression molding by loading granule powders into a mold, it is very important to secure the flowability of granular powders in a mold having a relief pattern. In this study, kaolin, silica, and feldspar are used as starting materials to prepare granule powders by a spray dryer process; the surface of the granule powders is subject to hydrophobic treatment with various concentrations of stearic acid. The effect on the flowability of the granular powder according to the change of stearic acid concentration is confirmed by measuring the angle of repose, tap density, and compressibility, and the occurrence of cracks in the green body produced in the mold with the relief pattern is observed. Then, the green body is sintered by a fast firing process, and the water absorption, flexural strength, and durability are evaluated. The surface treatment of the granule powders with stearic acid improves the flowability of the granule powders, leading to a dense microstructure of the sintered body. Finally, the hydrophobic treatment of the granule powders makes it possible to manufacture relief ceramic tiles having a flexural strength of 292 N/cm, a water absorption of 0.91 %, and excellent mechanical durability.

The mechanism of black core formation (블랙코어 형성 메커니즘)

  • Park Jiyun;Kim Yootaek;Lee Ki-Gang;Kang Seunggu;Kim Jung-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.208-215
    • /
    • 2005
  • The 10mm diameter aggregates made of clay, carbon and $Fe_2O_3$ were prepared to investigate the mechanism of black core formation. The specific gravity, absorption rate, percent of black core area, fracture strength, total Fe analysis, and XRF were measured at various compositions, sintering temperatures, sintering times, sintering atmospheres, and sintering methods. Small addition of $Fe_2O_3$ did not affect physical properties of the aggregates; however, the percent of black core area increased with increasing carbon contents and increasing sintering temperature. Specific gravity of the aggregates decreased and the water absorption ratio increased with increasing percent of black core area. The aggregates sintered at oxidation atmosphere showed clear border between shell and black core area. Hence, the aggregates sintered at reduction atmosphere showed only black core area in the cross-section of the aggregates. The specific gravity of the aggregates sintered at reduction atmosphere increased with increasing carbon contents and that was the lowest of all comparing other aggregates sintered at different atmospheres. Adsorption rate increased with increasing carbon contents at all atmospheres. The fast sintered aggregates showed lower specific gravity, higher absorption rate, and more black core area than the normally sintered aggregates. It was turned out that the aggregates having more black core area showed higher fracture strength than that of aggregates with no black core area. From the total Fe analysis, the concentration of Fe and FeO was higher at black core area than at shell. Because the concentration of $Fe_2O_3$ in the shell was higher than other area, the color of the shell appeared red. It was also turned out from the XRF analysis that carbon was exist only at black core area.

Properties of Synthesized Al2O3-CuO-ZnO/Ni Composite for Hydrogen Membranes

  • Rim, Saetbyol;Jung, Miewon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.477-480
    • /
    • 2014
  • An $Al_2O_3$-CuO-ZnO (ACZ) precursor powder was synthesized by a facial sol-gel process using a nonionic surfactant span 80 as the chelating agent to improve the surface area and morphology. When creating a hydrogen membrane, several kinds of properties are required, such as easy dissociation of hydrogen molecules, fast hydrogen diffusion, high hydrogen solubility, and resistance to hydrogen embrittlement. ACZ-Ni composite membranes (cermet) were prepared with this precursor and pure Ni powder via the hot press sintering (HPS) method. The ACZ powder was characterized by XRD, BET, and FE-SEM. Hydrogen permeation experiments were performed by Sievert's type of hydrogen permeation membrane equipment. The hydrogen permeability of ACZ/Ni 10 wt% and ACZ/Ni 20 wt% was obtained as 7.2 and $10molm^{-2}s^{-1}$ at RT, respectively. These values of the corresponding membranes were slightly increased with increasing pressures.

A Study on Hybrid material of Making Dental restorations by CAD/CAM System (치과 CAD/CAM용 복합소재를 이용한 치과보철물의 제작에 대한 연구)

  • Choi, Beom-Jin
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.86-94
    • /
    • 2014
  • In recent years, perhaps the biggest driver in new material development is the desire to improve crown and bridge esthetics compared to the traditional PFM or all-metal restorations. As such, zirconia, leucite-containing glass ceramic and lithium disilicate glass ceramic have become prominent in the dental practice. Each material type performs differently regarding strength, toughness, ease of machining and the final preparation of the material prior to placement. For example, glass ceramic are typically weaker materials which limits its use to single-unit restorations. On the other hand, zirconia has a high fracture toughness which enables multi-unit restorations. This material requires a long sintering procedure which excludes its use for fast chair side production. Developed hybrid material of CAD/CAM is contained nano ceramic elements. This new material, called a Resin Nano Ceramic is unique in durability and function. The material is not a resin or composite. It is also not a pure ceramic. The material is a mixture of both and consists of ceramic. Like a composite, the material is not brittle and is fracture resistant. Like a glass ceramic, the material has excellent polish retention for lasting esthetics. The material is easily machined chair side or in a dental lab, polishes quickly to an esthetic finish and if necessary, can be useful restoratives.

Bloating Mechanism of Artificial Lightweight Aggregate for Recycling the Waste Glass (폐유리를 재활용한 인공경량골재의 발포기구)

  • Kang, Shin-Hyu;Lee, Ki-Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.445-449
    • /
    • 2010
  • The purpose of this study is to improve recycling rate of the waste glasses by investigating bloating mechanism. In this study, we use waste glass(W/G) and hard clay(H/C) as raw materials. The artificial lightweight aggregates were formed by plastic forming($\phi$=10 mm) and sintered by fast firing method at different temperatures(between 700 and $1250^{\circ}C$). The physical properties of the aggregates such as bulk specific gravity, adsorption and microstructure of surface and cross-section are investigated with the sintering temperature and rate of W/G-H/C contents. As the result of the bulk specific gravity graphs, we can found out the inflection point at content of W/G 60 wt%. From the microstructure images, we considered the artificial lightweight aggregates content of W/ G over 60wt% are distributed numerous micro-pores by organic oxidation without Black Core and the artificial lightweight aggregates of W/G below 60 wt% are distributed macro-pores with Black Core.

Wet preparation of calcium phosphates from aqueous solutions

  • Lee, Byeong Woo;Hong, Il Gok
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.655-659
    • /
    • 2019
  • Calcium phosphates such as HA (hydroxyapatite), β-TCP (tricalcium phosphate) and biphasic HA/β-TCP, were synthesized by wet chemical precipitation in aqueous solution combined with ball milling process. Nanosize powders of the calcium phosphates were synthesized using Ca(OH)2 and H3PO4. The effects of initial precursor Ca/P ratio (1.30, 1.50 and 1.67), ball milling process and post heat-treatment on the phase evolution behavior of the powders were investigated. The phase of resulting powder was controllable by adjusting the initial Ca/P ratio. HA was the only phase for as-prepared powders in both cases of Ca/P ratios of 1.50 and 1.67. The single HA phase without any noticeable second phase was obtained for the initial Ca/P ratio of 1.67 in the overall heat-treatment range. Pure β-TCP and biphasic calcium phosphate (HA/β-TCP) were synthesized from precursor solutions having Ca/P molar ratios of 1.30 and 1.50, respectively, after having been heat-treated above 700 ℃. The β-TCP phase has appeared on the pre-existing DCPD (dicalcium phosphate dihydrate) and/or HA phase. Dense ceramics having translucency were obtained at a considerably lower sintering temperature. The modified process offered a fast, convenient and economical route for the synthesis of calcium phosphates.

A Making of Aesthetic Dental restorations with Nano Hybrid Ceramic material by CAD/CAM System (치과 CAD/CAM용 Nano Hybrid Ceranic 소재를 이용한 심미 치과보철물의 제작)

  • Choi, Beom-jin
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.25 no.2
    • /
    • pp.98-108
    • /
    • 2016
  • In recent days, perhaps the biggest driver in new material development is the desire to improve restorations esthetics compared to the traditional metal substructure based ceramics or all-ceramic restorations. Each material type performs differently regarding strength, toughness, effectiveness of machining and the final preparation of the material prior to placement. For example, glass ceramics are typically weaker materials which limits its use to single-unit restorations. On the other hand, zirconia has a high fracture toughness which enables multi-unit restorations. This material requires a long time sintering procedure which excludes its use for fast chair side production. Hybrid ceramic material developed for CAD/CAM system is contained improved nano ceramic elements. This new material, called a Resin Nano Hybrid Ceramic is unique in durability of function and aesthetic base compositions. The new nano-hybrid ceramic material is not a composite resin. It is also not a pure ceramic. The material is a mixture of both and consists of nano-ceramic fillers. Like a composite, the material is not brittle and is fracture resistant. Like a glass ceramic, the material has excellent polish retention for lasting esthetics. The material is easily machined by chair side or in a dental lab side, could be an useful restorative option.