• Title/Summary/Keyword: farm wastewater

Search Result 54, Processing Time 0.029 seconds

Livestock Wastewater Treatment Using MBR/NF/RO and Application of Post-Denitrification and Air Flotation Process to Treat Excess Sludge and NF/RO Brine (MBR/NF/RO를 이용한 가축폐수처리와 후탈질/응집가압부상을 이용한 잉여슬러지 및 농축수 처리 기술)

  • Na, Yumee;Bae, Jongbok;Moon, Taehun;Hwang, Yunyoung;Lee, Yangwoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.407-414
    • /
    • 2013
  • Full scale livestock wastewater treatment plant (100 t/d) was constructed and operated to develop compact and cost effective treatment process for public plant as well as individual farm. Liquid form of livestock wastewater after belt press filter was treated through MBR/NF/RO. NF/RO brine water was mixed with livestock wastewater sludge and treated using denitrification, coagulation and air flotation process. Mixed effluent of NF/RO and air flotation meet public livestock wastewater treatment standard, BOD, T-N and T-P, 30 mg/L, 60 mg/L, 8 mg/L below, respectively. Condensed sludge of air flotation returned belt press filter. Dewatered cake contained 90% water and could be used fertilizer after mixing sawdust.

Effect of Hydraulic Retention Time on Biological Nitrogen Removal in Land-based Fish Farm Wastewater (육상양식장 배출수내 생물학적 질소처리시 수리학적 체류시간의 영향)

  • Park, Noh-Back
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.3
    • /
    • pp.250-256
    • /
    • 2017
  • This study investigated the removal efficiency of organic matter and nitrogen from fish farm effluent by hydraulic retention time (HRT) using an upflow biological filter (ANR system) reactor. The recycling time and influent flow in the reactor were controlled to 14.8, 7.4, 5.5 and 3.2 h to evaluate HRT. In addition, each reactor was coupled to a fixed bed upflow filter charged with media. The results showed that removal efficiency was ${\geq}95%%$ with an HRT of 5.5 h, and nitrification efficiency was reduced to 81% with an HRT of 3.2 h, although nitrification efficiency temporarily decreased due to the shock load as HRT decreased. Total nitrogen removal rate was also reduced to about 65% with an HRT of 3.2 h, which was considered a washout effect of nitrifying and denitrifying microorganisms by increasing the shearing force to the filter media, which decreased organic matter and nitrogen removal efficiency.

Odor Reduction of Pig Wastewater Using Magnesia (in-situ test) (마그네시아를 이용한 돈분 폐수의 악취 저감(현장 시험))

  • Bae, Su Ho;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.3
    • /
    • pp.202-208
    • /
    • 2022
  • In this study, we tried to obtain the optimal conditions to reduce odors generated from pig wastewater using magnesia (MgO) through in-situ test after producing a reactor for removing odors. For this purpose, the filling amount of magnesia, the injection amount of pig wastewater, the aeration method, the aeration amount and the aeration time were considered. The field experiment was conducted at Cheongwoon Livestock Farm, which has a pig wastewater reservoir. As the amount of magnesia added to the weight of wastewater (500 kg) increases, the amount of ammonia (NH3) and hydrogen sulfide (H2S) generated tended to gradually decrease. As a result of the test, ammonia and hydrogen sulfide in the pig wastewater decreased up to 65% and 77%, respectively, for 2 days aeration after 0.8% of magnesia was added to the reaction tank. The initial pH of the pig wastewater in the reactor was 8.2, and the pH was found to be 9.2 when magnesia was added up to 0.8%. In the light of this trend, it can be known that magnesia gradually increases the pH in the pig wastewater and makes it weakly alkaline. As the pH increases, part of the ammonia gas present in the pig wastewater vaporizes into the air and the remaining part is removed by precipitation after chemical bonding with dissolved magnesium ions and phosphate ions. In order to remove the odor of pig wastewater and turn it into compost, most of the existing livestock farms go through a six-month aeration process using microorganisms. In contrast, the current study proved the effect of removing odors from pig wastewater within 2 days through chemical reactions that do not affect microbial activity.

A Study on the Growth Process and Cases Type of Smart Farm - Focused on the Case of Korea and Japan - (스마트팜의 발전과정과 유형별 사례 조사 - 한국과 일본의 사례를 중심으로 -)

  • Nam, Yun-Cheol
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.26 no.2
    • /
    • pp.37-46
    • /
    • 2024
  • The city is developing into a smart city. Smart villages and smart farms are developing in rural areas. Architectural technology needs synergy with smart cities, smart villages, and smart factories (intelligent factories) to help architectural experts understand smart farms and build facilities and equipment. Smart farms require design and construction technology with architectural structure and function. The purpose of this study was to investigate the current status and cases of smart farms in Korea and to investigate cases abroad. The conclusion is as follows. ① Smart farms are developing rapidly. The Korean government is expanding smart farms by utilizing ICT technology and infrastructure. ② 'Smart Farm Innovation Valley', which has been promoted since 2018, is a cutting-edge convergence cluster industrial complex that integrates production, education, and research functions such as start-ups and technological innovation. ③ In domestic cases, smart farms are operated in subway stations, buildings, supermarkets, and restaurants. ④ In the Japanese case, a dome-type smart farm was being operated. It utilized factory wastewater, waste heat, renewable energy, and used new materials. Otemachi Ranch raised livestock and provided a lounge on the 13th floor of the building. ⑤ In the cases of Korea and Japan, the smart farm technology is very similar. As stated earlier, since the food culture and agricultural technology of both countries are similar, we hope to promote the development of smart farms that can reduce concerns about future food by communicating and sharing mutual technologies.

A study on treatment farm.fishing village wastewater using aquatic plants (수생식물을 이용한 농어촌하수 처리에 관한 연구)

  • 박진식;문추연;장성호
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.40-47
    • /
    • 2002
  • In this study, water hyacinth plants(Eichhornia crassipes), water parsley(Oenanthe javanica) and Lemna paucicostate were used to treat contaminants such as COD, T-N and T-P in far m·fishing village wastewater. The results were as follows : In the batch system experiment, water hyacinth was showed at the high removal efficiency in the 173∼412kgCOD/ha·day concentration that is rather than 260mg/1 of the high concentration. The next is Oenanthe javanica, Lemna. Oenanthe javanica was showed the high removal efficiency in the 96∼173kgCOD/ha·day concentration that is less than 260mg/1 of the low concentration.

2,4-D Biodegradation Using Microorganism Extracted From Soil (1) (토양미생물에 의한 2, 4-D 분해에 관한 연구 (1))

  • Choung, Youn-kyoo;Lee, Byung chan;Kim, Jin-wook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.45-53
    • /
    • 1999
  • The microbial organisms named "Pseudomonas sp. LK-14" were isolated from farm land and shallow river sediment, activated, augmented and identified; which were using 2,4-D (2,4-Dichlorophenoxyacetic acid) as a sole carbon source and energy source. 2,4-D removal efficiency of LK-14 with 2,4-D sole carbon source (reactor S) were higher than that of Activated Sludge with 2,4-D sole carbon source (reactor A). Dynamic bioligical reaction kinetic parameters (sole carbon source was 2,4-D) obtained from batch reactor experiments were ${\mu}_{max}$ $0.105hr^{-1}$, $K_{s,24D}$ 15.64mg/L, $K_{i,24D}$ $1.94h^{r-1}$, $Y_{24D}$ 0.39 for LK-14 and ${\mu}_{max}$ $0.008hr^{-1}$, $K_{s,24D}$ 26.95mg/L, $K_{i,24D}$ $1.75hr^{-1}$, $Y_{24D}$ 0.10 for Activated Sludge. Using these parameters, we could predict the behaviors of 2,4-D substrate utilized by LK-14 and Activated Sludge in batch reactors. The kinetic parameters are enable to predict the 2,4-D substrate and microbial population behavior entering into wastewater treatment plants by using unsteady states dynamic simulation modeling technique.

  • PDF

Byproducts from Piggery Wastewater Treatment for the Sustainable Soil Amendment and Crop Production

  • Yang, Jae E.;Kim, Jeong-Je;Shin, Young-Oh;Shin, Myung-Kyo;Park, Yong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.140-145
    • /
    • 1999
  • Livestock manure is generally beneficial to soil and crop production when appropriate amount is applied, but excessive application may be detrimental to soil and water environments. A proper protocol of livestock waste treatment is required to manage the quality of soil and water. A trickling filter system using rice straw media was employed to treat piggery wastewater from small-scaled livestock farms as an alternative to the currently available methods. Batches of piggery wastewater were treated with this system, and the byproducts of rice straw media and trickling filtrate were applied to the soil with cultivating rye (Secale cereale L.). Objective of this research was to characterize these byproducts for the sustainable soil amendments and rye production. Both the treated straw medium and filtrate were proven to be effective organic fertilizers for rye plant development, with the enhanced but balanced absorption of nutrients. The synergistic effects of filtrate in addition to straw application did not show, but the filtrate appeared to lead to a higher water content of the plant. No specific nutrient deficiency or toxicity symptom was shown due to the salts derived from the byproducts applied. Chemical parameters of the soil quality were significantly improved with the application of straw medium either with or without the filtrate. Judging from parameters relating to the salt accumulations, such as sodium adsorption ratio (SAR), electrical conductivity (EC), exchangeable sodium percentage (ESP), potassium adsorption ratio (KAR), and residual P concentrations, the byproducts from piggery wastewater exhibited no detrimental effects on soil quality within the ranges of treatments used. In addition to the effectiveness of the rice straw trickling filter system for the small-scaled swine farms, both rice straw medium and filtrate could be recycled for the sustainable soil amendment and plant nutrition.

  • PDF

Attached Treatment using Combined Septic Tank and Soil Filter of Treated Livestock and Farm House Wastewater (축산폐수 처리수 및 농가 생활잡배수의 합병정화조와 Soil Filter 에 의한 연계처리)

  • Kim, Eun-Ho;Park, Hyun-Geoun;Sung, Nak-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.329-334
    • /
    • 1998
  • This study was conducted in order to investigate removal rate of organic matter, nitrogen and phosphorus to reduce environmental polluation with treatment to attach combined septic tank to 3 stage soil filter after mixing anaerobic treated water of livestock wastewater and low concentrated wastewater generated in farm house. Because anaerobic filter bed was packed in combined septic tank and a microorganism was accumulated in combined septic tank with increasing hydraulic retention time(HRT), if HRT $4{\sim}12day$, CODcr was removed $63.4{\sim}84.0%$. Also, $NH_4\;^+-N$ and $PO_4\;^{3-}-P$ were removed $3.9{\sim}5.4%$ and $18.3{\sim}29.0%$, respectively. In being re-treated by 3 stage soil filter, although hydraulic loading rate was gradually increased, CODcr, $NH_4\;^+-N$ and $PO_4\;^{3-}-P$ were removed above 90% due to filtration, adsorption, ion exchange, and action of soil microorganism. Generally, the attached treatment of combined septic tank and 3 stage soil filter did suitably treat livestock wastewater to water standard of discharge applied from '96 year, in view of decreasing pollution loading amount and recycling of agricultural water.

  • PDF

Characteristics of Immobilized Rhodopseudomonas sp. for Wastewater Treatment (폐수처리를 위한 고정화 Rhodopseudomonas sp.균의 특성)

  • 이범규;김상희;김중균
    • Journal of Life Science
    • /
    • v.9 no.3
    • /
    • pp.268-275
    • /
    • 1999
  • Rhodopseudomonas sp. was immobilized in three supports(agar, k-carrageenan, and PVA) in order to remove nitrate in wastewater coming from fish farm. Among them 3% agar was the most suitable support when denitrification rate and bead durability were tested. Optimum bead size was 4mm-diameter when the substrate transfer into the bead and shear stress for bead were considered, and optimum cell loading was 25mg dry $cells/cm^2$gel gel. Ethanol was the best as a carbon source, and optimum C:N ratio, temperature and pH were 1.5:1, $31^{\circ}C$,, and 6, respectively. Under these conditions the maximum denitrification rate in synthetic wastewater was $$345{\MU}{\ell};N_2/Cm^3 gel{\cdot}hr;and that in modified MYC medium was 450{\MU}{\ell}};N_2/Cm^3 gel{\cdot}hr $$.

  • PDF

Removal Efficiency of Settleable Solids in Seawater Aquaculture Farm Wastewater (하이드로싸이클론을 이용한 해수 양식장 침전 고형물의 제거 효율 평가)

  • Junhyuk Seo;Pyongkih Kim;Jeonghwan Park
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.1
    • /
    • pp.116-123
    • /
    • 2023
  • Flow-through aquaculture systems generate large amounts of wastewater containing compounds such as solids that can settle near aquafarms and cause eutrophication. The settled solids are often reintroduced into flow-through systems, and aquatic animals can be affected by the solids and pathogens associated with these solids. For a sustainable aquaculture operation, adequate wastewater treatment is required. Hydrocyclones are one of the most promising technologies for the removal of solids in aquaculture wastewater. In this study, a model for performance prediction of hydrocyclones was investigated under three different operating conditions: water temperature, solids concentration, and water inlet velocity. The synthetic solids solution was prepared using settled solids from abalone aquaculture farms. The daily solids removal rates of the tested hydrocyclones ranged from 0.18 to 26.0 g solids-m-3-day-1, and removal efficiency ranged from 5.1 to 34.4%. The inlet water velocity had the greatest effect on solids removal and hydrocyclone efficiencies. The following multiregression model equation was derived from the daily solids removal rate (g solids-m-3-day-1) results for water temperature (T, ℃), solids concentration (SS, mg-L-1), and tangential inlet water velocity (TIV, m-sec-1): daily solids removal rate: f(z)=4.465+0.809TIV-0.375T+0.217SS (r2=0.976).