• Title/Summary/Keyword: farm wastewater

Search Result 54, Processing Time 0.032 seconds

Effect of Humified Straw Used as a Medium of Trickling Filter with Livestock Wastewater on the Growth of Bunching Lettuce (Lactuca sativa L., var. crispa) and Soil Chemical Properties (축산폐수(畜産廢水) 살수여상충전재(撒水濾床充塡材)인 볏짚의 부숙처리가 상추(Lactuca sativa L., var. crispa)의 생육(生育)과 토양화학성(土壤化學性)에 미치는 영향(影響))

  • Kim, Jeong-Je;Yang, Jae-E;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.137-144
    • /
    • 1996
  • A feasible way to utilize small-scale livestock farm wastewater was explored. In place of common support materials rice straw was employed as a support medium of trickling filter for pig farm wastewater treatment. The straw medium which was humified for 20 days after wastewater treatment and mixed with soil significantly enhanced in general the development of bunching lettuce grown under greenhouse conditions. Improvement of soil chemical properties in terms of fertility was also achieved by the addition of humified straw medium after wastewater treatment. It was found that rice straw served as a satisfactory support medium of trickling filters with the wastewater treatment concerning removals of biological oxygen demand, chemical oxygen demand, and suspended solids.

  • PDF

The Effect of Remodeling Replacement of Photovoltaic Power Generation System in Fish Farm : Analysis of Energy Saving Effect through Simulation (수조식 양식장의 태양광발전시스템 리모델링 교체 효과: 시뮬레이션을 통한 에너지절감효과 분석)

  • Choi, Hyunseok;Na, Jonghyuk;Lee, Hyunyoung;Noh, Jayeop
    • Current Photovoltaic Research
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 2021
  • In the past, marine pollution caused by radioactivity and wastewater discharge caused mass destruction. As an alternative, the land farming system became common and operational. In recent years, safety and environmental problems caused by declining population due to aging of fishermen and underdeveloped facilities have always been lurking, so improvement is urgently needed. As part of the new renewable energy 3020 plan announced by the government in 2017, a new model was proposed to improve the environment as well as save energy when the roof of a water tank farm was remodeled into a solar power system. Study, when the existing roof was remodeled and replaced with a water tank farm in Busan as an empirical model, the energy saving rate was analyzed by comparing the actual electricity consumption and power generation.

Environmental impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farming system (비순환식 양액재배에서 발생하는 폐양액, 폐배지, 폐작물이 환경에 미치는 영향)

  • Park, Bounglog;Cho, Hongmok;Kim, Minsang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2021
  • Hydroponic farming is a method to grow a plant without soil. Plants can be grown on water or hydroponic growing media, and they are fed with mineral nutrient solutions, which are fertilizers dissolved into water. Hydroponic farming has the advantage of increasing plant productivity over conventional greenhouse farming. Previous studies of hydroponic nutrient wastewater from acyclic hydroponic farms pointed out that hydroponic nutrient wastewater contained residual nutrients, and they were drained to a nearby river bank which causes several environmental issues. Also, previous studies suggest that excessive use of the nutrient solution and disposal of used hydroponic growing media and crop wastes in hydroponic farms are major problems to hydroponic farming. This study was conducted to determine the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment by analyzing water quality and soil analysis of the above three factors. Three soil cultivation farms and several hydroponic farms in the Gangwon C region were selected for this study. Samples of water and soils were collected from both inside and outside of each farm. Also, a sample of soil and leachate from crop waste piles stacked near the farm was collected for analysis. Hydroponic nutrient wastewater from acyclic hydroponic farm contained an average of 402 mg/L of total nitrogen (TN) concentration, and 77.4 mg/L of total phosphate (TP) concentration. The result of TP in hydroponic nutrient wastewater exceeds the living environmental standard of the river in enforcement decree of the framework act on environmental policy by 993.7 times. Also, it exceeds the standard of industrial wastewater discharge standards under the water environment conservation act by 6~19 times in TN, and 2~27 times in TP. Leachate from crop waste piles contained 11,828 times higher COD and 395~2662 times higher TP than the standard set by the living environmental standard of the river in enforcement decree of the framework act on environmental policy and exceeds 778 times higher TN and 5 times higher TP than the standard of industrial wastewater discharge standards under the water environment conservation act. For more precise studies of the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment, additional information regarding a number of hydroponic farms, arable area(ha), hydroponic farming area, seasonal, weather, climate factor around the river, and the property of the area and farm is needed. Analysis of these factors and additional water and soil samples are needed for future studies.

A Comparative Study on Treatment Efficiencies by Anaerobic Packed and Fluidized-bed Biofilm of Livestock Wastewater (축산폐수의 혐기성 충전층과 유동층 생물막법에 의한 처리효율의 비교연구)

  • 김은호;박현건;장성호
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 1998
  • This study was conducted in order to evaluate the treatment efficiencies of anaerobic packed and fluidized-bed biofilm and to investigate applicability in treating livestock wastewater. Biocarbonate alkalinity(BA) and volatile fatty acid(VFA) were about 3,230-3,270 mg/l, 3,790-3,126 mg/l(as CaCO$_3$) and 224-402 mg/l, 141-387 mg/l(as CH$_3$COOH), and VFA/BA ratio was about 0.069~0.12, 0.045-0.12 in packed and fluidized-bed biofilm. When COD loading rate was 6.0 kg COD/$m^3\cdot$ day in packed and fluidized-bed biofilm, methane gas production were 3.23 l/day and 4.38 l/day, respectively. In the same COD loading rate, methane gas production volumes per kg COD removal were 0.25 m$^3$ CH$_4$/kg COD$_{rm}$ and $0.28 m^3 CH_4/kg COD^{rm}$, respectively. At this time, it could be estimated that fluidized-bed biofilm was more high. In case of HRT 0.94 day(6.0 kg COD/$m^3\cdot$ day) and 11 day(0.5 kg COD/$m^3\cdot$ day), packed-bed biofilm showed 59% and 81% COD removal efficiency, respectively. While fluidized-bed biofilm showed 72% and 85% removal efficiency, respectively. It was showed that fluidized-bed biofilm was more efficient. Packed-bed biofilm was higher than fluidized in treatment efficiencies of organic matters, but required continuous treatment using combined system, because it was very exceeded over an environmental standard solidified from '96 year. In operating fluidized-bed biofilm, if farm house consider high power cost according to high circulation ratio in an economic point of view, it would have an effect that farm house use packed-bed biofilm as combined system in treating livestock wastewater.

  • PDF

Two-stage anaerobic biogas plant using piggery wastewater (축산분뇨를 이용한 바이오가스 플랜트)

  • Park, Hyung-Wan;Lee, Hyun-Sang;Park, Kyung-Ho;Kim, Keum-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.251-255
    • /
    • 2008
  • Biogas plant was started in 2007 for the purpose of treatment of $20m^3$/d of wastewater from piggery farm, biogas-production and electricity generation during treatment of the wastewater. The biogas plant is consists of two anaerobic digesters, gas holder and 60 kWe generator. $62,287m^3$ of biogas was produced and 74,745kWh electricity was generated by using the biogas after commencing the biogas plant.

  • PDF

HRT and Influent Concentration Effects on Swine Wastewater Treatment Using UASB (UASB의 HRT와 원수의 농도가 양돈폐수 처리에 미치는 영향 연구)

  • Park, Jong-Hoon;Kang, Seon-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.365-370
    • /
    • 2002
  • This study aims to study the effect of HRT and influent concentration on swine wastewater treatment using UASB(Upflow Anaerobic Sludge Blanket). Sample was separately collected from the piggery farm; urine(liquid part) and solid part to compare their treatment characteristics. Reactors were used two UASB(3.2 L) in this research under constant temperature ($35^{\circ}C$). Their operating conditions were as follows; Run 1(UASB ; HRT 6-days, 1 cycle/d), Run 2(UASB ; HRT 3-days, 1 cycle/d). Biogas was collected and analyzed using GC(HP-6890). By comparing the results of Run 1 and Run 2, the effect of HRT was investigated. The treatment efficiency of Run 1 which had longer HRT was higher than that of Run 2 in both solid and liquid parts of piggery sample. Methane content in collected biogas is more than 80%.

An Influence of Livestock Farm's Wastewater on the Water Quality of Near Streams flowing into the Chungju Lake (축산농가 오수가 충주호에 유입되는 지천의 수질에 미치는 영향)

  • Oh, I. H.;Lee, J. H.;Hwang, H. S.;Jang, Y. S.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.2
    • /
    • pp.89-96
    • /
    • 2005
  • To investigate the influence of livestock farm's wastewater on the near stream, the water quality of 3 different streams are analysed after seasons. In summer, the minimum T-N in the upper stream was 0.005 ppm and the maximum T-N in the down stream was 5.005 ppm. The phosphate was detected only in down stream of S2 point and was 0.5 ppm. COD was varied from 8 ppm in upper stream to 20 ppm in down stream. In fall, the T-N and the phosphate had shown similar results as that of in summer, however COD was varied from 3 ppm in upper stream to 6 ppm in down stream. In winter, the minimum T-N in the upper stream was 0.053 ppm and the maximum T-N in the down stream was 0.51 ppm. The phosphate was detected only in down stream of S2 point and was 0.5 ppm. COD was varied from 3 ppm in upper stream to 6 ppm in down stream. To be becoming fall and winter, the water quality of streams showed better than that of summer, and the wastewater from the livestock farms had little influence on the near streams.

  • PDF

Effect of Straw Used as a Medium of Trickling Filter with Livestock Wastewater on the Growth of Bunching Lettuce(Lactuca sativa L., var. crispa) and Soil Chemical Properties (축산폐수(畜産廢水) 살수여상충전재(撒水濾床充塡材)로 사용(使用)된 짚이 상추(Lactuca sativa L., var. crispa)와 토양화학성(土壤化學性)에 미치는 영향(影響))

  • Kim, Jeong-Je;Yang, Jae-E;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.371-377
    • /
    • 1996
  • Utilization of crop residues was investigated in search of ecologically desirable treatment of wastewater from small-scale swine farm. Instead of common materials rice stray was used as a support medium of tricking filter with the farm, wastewater treatment. The treated rice stave medium was dried, crushed, and directly added to soil, where bunching lettuce seedlings were grown under greenhouse conditions. The development of bunching lettuce was significantly enhanced by the application of the straw medium up to 2100 kg/10a. Little changes in soil chemical properties were observed at harvesttime, except the pH which was raised by more than 1 unit, and the content of Mg which was depleted presumably by the uptake of the plant.

  • PDF

Applicability on Wet-land for Management of NPS in Organic Matter and Nutrients from Agriculture and Livestock Farm Area (가축 사육 농업지역 강우유출수 내 유기물 및 영양염류 관리를 위한 인공습지 적용성 평가)

  • Im, Jiyeol;Kang, Chaewon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.372-380
    • /
    • 2021
  • Non-point source pollutants and high-concentration livestock wastewater are reported as major factor of water pollution in water system and wet-land. So, LID is suggested as a method to manage of them. wet-lands is presented as effective method for management of NPS from agriculture and livestock farm area based on various NPS reduction mechanism. In this research, the application of wet-lands was evaluated based on monitoring and modeling of agriculture and livestock farm in J city, Jeollabuk-do. As a resutl, EMC during rainfall event was found to be about 27 times higher than dry season based on a BOD. indicating that the management of non-point pollutants is urgent. Modeling-based wet-land reduction efficiency was BOD 57.5%, TN 48.9% and Tp 64.2%. However, removal efficiency of wet-land tends to decrease during the winter and large amounts of rainfall runoff occur, it is necessary to manage of wet-land. Based on the results of this research, wet-land could be proposed as an alternative to stable management of NPS in agriculture and livestock farm area.