• Title/Summary/Keyword: farm management efficiency

Search Result 134, Processing Time 0.023 seconds

Studies on the Efficiency of Piglet Production by Controlling the Farrowing Time I. Factors on the Normal Farrowing Time in Swine (돼지에 있어서 분만시각의 인위적 조절에 의한 자돈생산 효율에 관한 연구 I. 돼지에 있어서 자돈분만 시각에 미치는 요인에 관한 연구)

  • 정영채;김창근;윤종택;이종완;전광주;이석우;이학철;이관순;나광빈
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.2
    • /
    • pp.171-178
    • /
    • 2000
  • To improve the pig farm management and efficiency of swine industry by inducing the farrowing to day-time from night, In the first experiment, reproduction records of purebred and crossbred pigs were collected and analyzed to estimate the $\varepsilon$ ffec 잉 of factors affecting day and night farrowing. The general linear model was used to estimate the least square means of the factors affecting various reproductive characteristics. And also, chi-square tests were used to examine the independence of the reproductive traits and environmental factors using the SAS (1992). The comparisons between pure and crossbred pigs for total number born, percentage of number born alive, gestation length, time length for farrowing were determined. The results indicated that the gestation length of crossbred (115.11 d) was slightly longer than that of purebred (114.89 d, p<0.05). For the seasonal effects on total number born, the largest was found in spring and no differences were found among summer, fall and winter. The average gestation length was 1 day longer in spring and winter than in summer and fall. The total number born and number born alive were smaller in first, second, and greater or equal to sixth parity than other parities. And also, the percentage of no. born alive was least in greater or equal to sixth parity. For the effect of mating methods, natural and artificial insemination, on total number born and number born alive, no differences between the two methods were found. However, the percentage of number born alive for natural mating was 98.06% and was higher than artificial insemination(93.75%). The time length for farrowing was I hour were found for the 6 hrs of farrowing time. In general situation of pig farms, day-time farrowing was 34.8% and night farrowing was 65.2%, indicating that night farrowing was almost double of the night farrowing.

  • PDF

A Survey on the Workplace Environment and Personal Protective Equipment of Poultry Farmers (양계 농업인의 작업장 환경 및 개인보호구 착용 실태조사)

  • Kim, Insoo;Kim, Kyung-Ran;Lee, Kyung-Suk;Chae, Hye-Seon;Kim, Sungwoo
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.6
    • /
    • pp.454-468
    • /
    • 2014
  • Objectives: This study was conducted to investigate the actual condition of the farm work environment and personal protective equipment as part of the effort to improve livestock work for the safety and health of poultry farmers and provide basic data for establishing plans to improve and develop personal protective equipment. Methods: For this purpose, a questionnaire survey on general information about stables, the poultry work environment, accidents, the wearing of work clothes and personal protective equipment, and the level of awareness related to personal protective equipment was conducted among 148 poultry farmers. Results: As a result, it was found that poultry workplace environment was exposed to such risks as fine dusts; organic dusts; poisonous gases; odorous substances; chicken excrement; contact with chickens, bacteria or viruses; and accidents related to machine operation. Thirteen percent of respondents suffered severe respiratory diseases, and the most frequently injured sites due to accidents were the hands (25.7%), knees (23.8%), arms (17.3%), and head (10.9%). The most frequent type of accident was collisions between the body and obstacles or machinery during movement (36.4%), followed by erroneous machine operation such as feeders and electric shocks (8.5%). Regarding the wearing of work clothes and personal protective equipment, 51.7% of the respondents wore worn-out clothing or everyday clothes, whereas only 32.0% wore work clothes. The percentage of farmers who wore proper protective equipment for the work environment during poultry work was 48.4%. The most frequently used type of protective equipment was boots (38.9%), followed by mask (36.7%), gloves (36.3%), appropriate work clothes (22.6%), quarantine clothes (17.6%), helmets (13.4%), and goggles (12.6%). The rate of wearing goggles was low because they were considered inconvenient and lowered work efficiency. Furthermore, they purchased everyday products available on the market for their personal protective equipment which were not appropriate for maintaining safety in an actual harmful environment and its consequent risks. As a result of the survey of the awareness level related to personal protective equipment, their levels of awareness of accidents and attitude proved to be average or higher, but the practice of wearing protective equipment and the level of knowledge and management of personal protective equipment were lower. Conclusion: This survey found that the wearing status of personal protective equipment among poultry farmers was insufficient even though they were exposed to risks. Most respondents were aware of the necessity of wearing personal protective equipment and of the potential for accidents, but they did not wear proper protective equipment. Their wearing rate was low due to a lack of knowledge about protective equipment, as well as the inconvenience of wearing it. Therefore there is a need to improve and develop specialized personal protective equipment for respiration, hands, and eyes, as well as work clothes that can protect farmers from major harmful matter that is generated in the poultry workplace. Based on the results of this investigation, we will conduct further studies on the required performance and design directions of personal protective equipment while collecting more objective data through field-oriented assessments.

An Empirical Study on Verifying the Estimated Discrimination and Parentage Test Powers of the 13 Traceability Microsatellite Markers for Commercial Pigs Produced by a Three-way Cross (3원교잡 비육돈 집단에 대한 이력추적용 13 Microsatellite Marker의 판별효율 및 혈연관계 추정효율 실증 연구)

  • Lim, Hyun-Tae;Kim, Byeong-Woo;Cho, In-Cheol;Yoo, Chae-Kyoung;Park, Moon-Sung;Park, Hee-Bok;Lee, Jae-Bong;Lee, Jung-Gyu;Jeon, Jin-Tae
    • Journal of Animal Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • Using the materials collected from nine farms in a three-way cross system to produce commercial pigs produced from F1 sows (Landrace $\times$ Large White) $\times$ Duroc, the power of individual discrimination and parentage of the 13 microsatellite (MS) marker set that has been suggested for individual/brand identification (traceability) was empirically tested. Initially, genotypes of the parental population ($F_1$ sows and Duroc), and commercial pigs were determined and the genotype frequency and polymorphic index were estimated using the Cervus 2.0 program. The probability of identity among genotypes of random individuals, that random half sibs and that of full sib individuals, based on the genotypes from 91 $F_1$ sows and Duroc were expected to be $4.94{\times}10^{-34}$, $8.16{\times}10^{-23}$ and $2.01{\times}10^{-08}$, respectively, using the API-CALC version 1.0 program. When commercial pigs were included, the estimates increased to $3.74{\times}10^{-35}$, $5.48{\times}10^{-25}$ and $2.96{\times}10^{-11}$, respectively. For the empirical verification of the estimated powers of individual discrimination and parentage, the parentage test was performed for 452 commercial pigs using PAPA version 2.0, and individuals with the same genotype were investigated using the Cervus version 2.0 program. Parents for all commercial pigs were successfully estimated and no identical individual was identified in the pedigree. Although the individual discriminating power was not fully verified because of the lack of individuals corresponding with the theoretical power, the 100% efficiency of parentage test was clearly confirmed. Therefore, we believe that the 13 MS marker set in conjunction with management record/information for the pig production kept in a farm/brand should be useful in the pork traceability in a brand unit.

A Study on Transition of Rice Culture Practices During Chosun Dynasty Through Old References IX. Intergrated Discussion on Rice (주요(主要) 고농서(古農書)를 통(通)한 조선시대(朝鮮時代)의 도작기술(稻作技術) 전개(展開) 과정(過程) 연구(硏究) - IX. 도작기술(稻作技術)에 대(對)한 종합고찰(綜合考察))

  • Guh, J.O.;Lee, S.K.;Lee, E.W.;Lee, H.S.
    • Korean Journal of Weed Science
    • /
    • v.12 no.1
    • /
    • pp.70-79
    • /
    • 1992
  • From the beginning of the chosun dynasty, an agriculture-first policy was imposed by being written farming books, for instance, Nongsajiksul, matched with real conditions of local agriculture, which provided the grounds of new, intensive farming technologies. This farming book was the collection of good fanning technologies that were experienced in rural farm areas at that time. According to Nongsajiksul, rice culture systems were divided into "Musarmi"(Water-Seeded rice), /"Kunsarmi"(dry-seeded rice), /transplanted rice and mountainous rice (upland rice) culture. The characteristics of these rice cultures with high technologies were based of scientific weeding methods, improved fertilization, and cultivation works using cattle power and manpower tools systematically. Reclamation of coastal swampy and barren land was possible in virtue of fire cultivation farming(火耕) and a weeding tool called "Yoonmok"(輪木). Also, there was an improved hoe to do weeding works as well as thinning and heaping-up of soil at seeding stages of rice. Direct-seeded rice culture in flat paddy fields were expanded by constructing the irrigation reservoirs and ponds, and the valley paddy fields was reclaimed by constructing "Boh(洑)". These were possible due to weed control by irrigation waters, keeping soil fertility by inorganic fertilization during irrigation, and increased productivity of rice fields by supplying good physiological conditions for rice. Also, labor-saving culture of rice was feasible by transplanting but in national-wide, rice should not basically be transplanted because of the restriction of water use. Thus, direct-seeded rice in dry soils was established, in which rice was direct-seeded and grown in dry soils by seedling stages and was grown in flooded fields when rained, as in the book "Nongsajiksul". During the middle of the dynasty(AD 1495-1725), the excellent labor-saving farmings include check-rowing transplanting because of weeding efficiency and availability in rice("Hanjongrok"), and, nurserybed techniques (early transplanting of rice) were emphasized on the basis of rice transplanting ["Nongajibsung"]. The techniques for deep plowing with cattle powers and for putting more fertilizers were to improve the productivity of labor and land, The matters advanced in "Sanlimkyungje" more than in "Nongajibsung" were, development of "drybed of rice nursery stock", like "upland rice nursery" today, transplanting, establishment of "winter barly on drained paddy field, and improvement of labor and land-productivity in rice". This resulted in the community of large-scale farming by changing the pattern of small-farming into the production system of rice management. Woo-hayoung(1741-1812) in his book "Chonilrok" tried to reform from large-scale farmings into intensive farmings, of which as eminent view was to divide the land use into transplanting (paddy) and groove-seeding methods(dry field). Especially as insisted by Seo-yugo ("Sanlimkyungjeji"), the advantages of transplanting were curtailment of weeding labors, good growth of rice because of soil fertility of both nurserybed and paddy field, and newly active growth because rice plants were pulled out and replanted. Of course, there were reestimation of transplanting, limitation of two croppings a year, restriction of "paddy-upland alternation", and a ban for large-scale farming. At that period, Lee-jiyum had written on rice farming technologies in dry upland with consider of the land, water physiology of rice, and convenience for weeding, and it was a creative cropping system to secure the farm income most safely. As a integrated considerations, the followings must be introduced to practice the improved farming methods ; namely, improvement of farming tools, putting more fertilizers, introduction of cultural technologies more rational and efficient, management of labor power, improvement of cropping system to enhance use of irrigation water and land, introduction of new crops and new varieties.

  • PDF