• Title/Summary/Keyword: far-infrared emission

Search Result 112, Processing Time 0.02 seconds

RADIO IMAGING OF THE NGC 1333 IRAS 4B REGION

  • Choi, Min-Ho;Lee, Jeong-Eun
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.5
    • /
    • pp.201-208
    • /
    • 2011
  • The NGC 1333 IRAS 4B region is observed in the 6.9 mm and 1.3 cm continuum with an angular resolution of about 0.4 arcseconds. IRAS 4BI is detected in both bands, and BII is detected in the 6.9 mm continuum only. The 1.3 cm source of BI seems to be a disk-like flattened structure with a size of about 50 AU. IRAS 4BI does not show any sign of multiplicity. Examinations of archival infrared images show that the dominating emission feature in this region is a bright peak in the southern outflow driven by BI, corresponding to the molecular hydrogen emission source HL 9a. Both BI and BII are undetectable in the mid-IR bands. The upper limit on the far-IR flux of IRAS 4BII suggests that it may be a very low luminosity young stellar object.

FIR VIEW OF DISKS OF WEAK-LINE T TAURI STARS

  • Takita, Satoshi;Doi, Yasuo;Arimatsu, Ko;Ootsubo, Takafumi;AKARI Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.127-129
    • /
    • 2017
  • We have observed ~60 Weak-line T Tauri stars (WTTSs) toward the Chamaeleon star forming region using the AKARI Far-Infrared Surveyor (FIS) All-Sky maps. We could not detect any significant emission from each source even at the most sensitive WIDE-S band. Then, we have performed stacking analysis of these WTTSs using the WIDE-S band images to improve the sensitivity. However, we could not detect any significant emission in the resultant image with a noise level of $0.05MJy\;sr^{-1}$, or 3 mJy for a point source. The three-sigma upper limit of 9 mJy leads to the disk dust mass of $0.01M_{\oplus}$. This result suggests that the disks around Chamaeleon WTTSs are already evolved to debris disks.

A Fundamental Physical Properties of Wood with Charcoal and Loess (목탄과 황토함유 목질소재의 기초물성)

  • Lee, Wun-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.2
    • /
    • pp.49-56
    • /
    • 2006
  • This research was carried out to examine the FIR (far-infrared rays) emissivity and emission power of five types of flooring board by the mixing ratio of charcoal and loess, and the physical property of five types of injected flooring board by the amount of mixture. Type D was appeared the most high value of FIR emissivity and emission power. But there was a little difference among the five types of flooring board values. In physical properties, control type flooring board and injected flooring board showed a similar tendency. Among the domestic trees, all of hard wood seems to be used to surface wood for strong hardness flooring board. But a coniferous tree was not.

  • PDF

Dust Radiative Transfer Model of Spectral Energy Distributions in Clumpy, Galactic Environments

  • Seon, Kwang-il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.52.2-52.2
    • /
    • 2018
  • The shape of a galaxy's spectral energy distribution ranging from ultraviolet (UV) to infrared (IR) wavelengths provides crucial information about the underlying stellar populations, metal contents, and star-formation history. Therefore, analysis of the SED is the main means through which astronomers study distant galaxies. However, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the mid-IR and Far-IR. I present the updated 3D Monte-Carlo radaitive transfer code MoCafe to compute the radiative transfer of stellar, dust emission through a dusty medium. The code calculates the emission expected from dust not only in pure thermal equilibrium state but also in non-thermal equilibrium state. The stochastic heating of very small dust grains and/or PAHs is calculated by solving the transition probability matrix equation between different vibrational, internal energy states. The calculation of stochastic heating is computationally expensive. A pilot study of radiative transfer models of SEDs in clumpy (turbulent), galactic environments, which has been successfully used to understand the Calzetti attenuation curves in Seon & Draine (2016), is also presented.

  • PDF

The Infrared Medium-deep Survey. VII. Optimal selection for faint quasars at z ~ 5 and preliminary results

  • Shin, Suhyun;Im, Myungshin;Kim, Yongjung;Hyun, Minhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.75.1-75.1
    • /
    • 2019
  • The universe has been ionized in the post-reionization by several photon contributors. The dominant source to produce the hydrogen ionizing photons is not revealed so far. Faint quasars have been expected to generate UV photon budgets required to maintain ionization state of universe. Observational limits, however, hinder to discover them despite their higher number density than bright one. Consequently, the influence of faint quasars on post-reionization are not considered sufficiently. Therefore, a survey to find faint quasars at z ~ 5 is crucial to determine the main ionizing source in the post-reionization era. Deep images from the Hyper Suprime-Cam Subaru Strategic Program (HSC SSP) allow us to search for quasar swith low luminosities in the ELAIS-N1 field. J band information are obtained by the Infrared Medium-deep Survey (IMS) and the UKIRT Infrared Deep Sky Survey (UKIDSS) - Deep ExtragalacticSurvey (DXS). Faint quasar candidates were selected from several multi-band color cut criteria based on simulated quasars on color-color diagram. To choose the reliable candidates with possible Lyman break, we have performed medium-bands observations. Whether a candidate is a quasar or a dwarf star contamination was decided by results from chi-square minimization of quasar/dwarf model fitting. Spectroscopic follow-up observations confirm three quasars at z ~ 5. 100% spectral confirmation success rate implies that the medium-band observations effectively select faint quasars with strong Lyman alpha emission.

  • PDF

AKARI FAR-INFRARED ALL-SKY SURVEY MAPS

  • Doi, Yasuo;Komugi, Shinya;Kawada, Mitsunobu;Takita, Satoshi;Arimatsu, Ko;Ikeda, Norio;Kato, Daisuke;Kitamura, Yoshimi;Nakagawa, Takao;Ootsubo, Takafumi;Morishima, Takahiro;Hattori, Makoto;Tanaka, Masahiro;White, Glenn J.;Etxaluze, Mireya;Shibai, Hiroshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.111-116
    • /
    • 2012
  • Far-infrared observations provide crucial data for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since most of its energy is emitted between ~ 100 and $200{\mu}m$. We present the first all-sky image from a sensitive all-sky survey using the Japanese AKARI satellite, in the wavelength range $50-180{\mu}m$. Covering > 99% of the sky in four photometric bands with four filters centred at $65{\mu}m$, $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ wavelengths, this achieved spatial resolutions from 1 to 2 arcmin and a detection limit of < 10 MJy $sr^{-1}$, with absolute and relative photometric accuracies of < 20%. All-sky images of the Galactic dust continuum emission enable astronomers to map the large-scale distribution of the diffuse ISM cirrus, to study its thermal dust temperature, emissivity and column density, and to measure the interaction of the Galactic radiation field and embedded objects with the surrounding ISM. In addition to the point source population of stars, protostars, star-forming regions, and galaxies, the high Galactic latitude sky is shown to be covered with a diffuse filamentary-web of dusty emission that traces the potential sites of high latitude star formation. We show that the temperature of dust particles in thermal equilibrium with the ambient interstellar radiation field can be estimated by using $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ data. The FIR AKARI full-sky maps provide a rich new data set within which astronomers can investigate the distribution of interstellar matter throughout our Galaxy, and beyond.

Observation of the Cosmic Near-Infrared Background with the CIBER rocket

  • Kim, Min-Gyu;Matsumoto, T.;Lee, Hyung-Mok;Arai, T.;Battle, J.;Bock, J.;Brown, S.;Cooray, A.;Hristov, V.;Keating, B.;Korngut, P.;Lee, Dae-Hee;Levenson, L.R.;Lykke, K.;Mason, P.;Matsuura, S.;Nam, U.W.;Renbarger, T.;Smith, A.;Sullivan, I.;Wada, T.;Zemcov, M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.42-42
    • /
    • 2012
  • The First stars (Pop.III stars) in the universe are expected to be formed between the recombination era at z - 1100 and the most distant quasar (z - 8). They have never been directly detected due to its faintness so far, but can be observed as a background radiation at around 1${\mu}m$ which is called the Cosmic Near-Infrared Background (CNB). Main part of the CNB is thought to be redshifted Lyman-alpha from gas clouds surrounding the Pop.III stars. Until now, the COBE (COsmic Background Explorer) and the IRTS (Infrared Telescope in Space) observed excess emission over the background due to galaxies. To confirm the COBE and the IRTS results and pursue more observational evidences, we carried out the sounding rocket experiment named the Cosmic Infrared Background ExpeRiment (CIBER). The CIBER is successfully launched on July 10, 2010 at White Sands Missile Range, New Mexico, USA. It consists of three kinds of instruments. We report the results obtained by LRS (Low Resolution Spectrometer) which is developed to fill the uncovered spectrum around 1${\mu}m$. LRS is a refractive telescope of 5.5 cm aperture with spectral resolution of 20 - 30 and wavelength coverage of 0.7 to 2.0${\mu}m$. After subtracting foreground components (zodiacal light, integrated star light and diffuse galactic light) from the sky brightness of observed five fields, there remained significant residual emission (even for the lower limit case) consistent with the IRTS and the COBE results. In addition, there exists a clear gap at 0.7 - 0.8${\mu}m$ in the CNB spectrum over the background due to galaxies according to recent results (Matsuoka et al. 2011; Mattila et al. 2011). The origin of the excess emission could be ascribed to the Pop.III stars with its active era of z = 7 - 10.

  • PDF

Ortho-to-Para Ratio Studies of Shocked $H_2$ Gas Observed from Two Supernova Remnants IC 443 and HB 21

  • Shinn, Jong-Ho;Lee, Ho-Gyu;Moon, Dae-Sik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.48.2-48.2
    • /
    • 2013
  • We present the near-infrared spectra (2.5-5.0 um) of shocked $H_2$ gas, observed with the Infrared Camera onboard the satellite AKARI. Two supernova remnants, IC 443 and HB 21, were observed. IC 443 shows a hint of non-equilibrium ortho-to-para ratio (OPR): 2.4 (-0.2, +0.3). HB 21 also shows an indication of a potential non-equilibrium OPR: 1.8-2.0. These non-equilibrium OPRs are first reported for shocked $H_2$ gas at E(v,J) > 7000 K, as far as we are aware. We concluded that the non-equilibrium OPR probably originates from dissociative J-shocks, considering several factors such as the shock combination requirement, the line ratios, and the possibility that $H_2$ gas can form on grains with a non-equilibrium OPR. The difference in the collision energy of H atoms on grain surfaces would give rise to the observed difference between the OPRs of IC 443 and HB 21, if dissociative J-shocks are responsible for the $H_2$ emission. Our study suggests that shocked-then-cooled $H_2$ gas may play as a heat reservoir with the non-equilibrium OPR.

  • PDF

A RELATION BETWEEN ACTIVE BLACK HOLES AND STAR FORMATION OF LOCAL ACTIVE GALAXIES

  • MATSUOKA, KENTA;WOO, JONG-HAK;BAE, HYUN-JIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.341-343
    • /
    • 2015
  • We present an analysis of the relation between star-formation (SF) and accretion luminosities of local type-2 active galactic nuclei (AGNs) at $0.01{\leq}z<0.22$. We match type-2 AGNs found in the Sloan Digital Sky Survey to current far-infrared (FIR) survey catalogues based on AKARI and Herschel. Estimating AGN luminosities from [$O{\small{III}}$]${\lambda}5007$ and [$O{\small{I}}$]${\lambda}6300$ emission lines, we find a positive linear trend between FIR and AGN luminosities over a wide dynamical range. This result appears to be inconsistent with recent reports that low-luminosity AGNs show no correlation between FIR and X-ray luminosities; this contradiction is likely due to Malmquist and sample selection biases. Moreover, we also find that pure-AGN candidates, for which the FIR radiation is thought to be AGN-dominated, show significant low-SF activities. These AGNs hosted by low-SF galaxies are rare in our sample. However, it is possible that the low fraction of low-SF AGN is caused by observational limitations, as recent FIR surveys are not sufficient to examine the population of high-luminosity AGNs hosted by low-SF galaxies.

PATIAL DISTRIBUTION OF STAR FORMATION ACTIVITY ON NGC 253 BY FIR AND RADIO EMISSION LINES

  • Takahashi, H.;Matsuo, H.;Nakanishi, K.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.261-262
    • /
    • 2012
  • The aim of this research is to reveal the spatial distribution of the star formation activity of nearby galaxies by comparing CO molecular emission lines with the large area observation in far-infrared (FIR) lines. We report the imaging observations of NGC 253 by FIR forbidden lines via FIS-FTS and CO molecular lines from low to high excitation levels with ASTE, which are good tracers of star forming regions or photo-dissociation regions, especially spiral galaxies, in order to derive the information of the physical conditions of the ambient interstellar radiation fields. The combination of spatially resolved FIR and sub-mm data leads to the star formation efficiency within galaxy. The ratio between the FIR luminosity and molecular gas mass, $L_{FIR}/M_{H_2}$, is expected to be proportional to the number of stars formed in the galaxy per unit molecular gas mass and time. Moreover the FIR line ux shows current star formation activity directly. Furthermore these can be systematic and statistical data for star formation history and evolution of spiral galaxies.