• Title/Summary/Keyword: far-field effect

Search Result 288, Processing Time 0.039 seconds

Error Investigation in use of Near-field Acoustic Holography in the Underwater Environment of Reflected Wave (수중반사파 환경에서의 근접음장 홀로그래피 적용에 대한 오차 고찰)

  • Yi, Jongju;Kang, Myunghwan;Han, Seungjin;Jeong, Hyunjoo;Bae, Sooryong;Jung, Woojin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.969-976
    • /
    • 2014
  • Nowadays, it is required for naval ships to estimate 3D underwater radiated noise pattern in all direction at peak frequencies of hull vibration for the reduction of being detected and doing the effective operation. For this purpose, the numerical method has to be developed to calculate 3D underwater radiated noise pattern with experimental data. It is very difficult to obtain the experimental data for the real ship. Alternative to get the experimental results is to use NAH(near-field acoustic holography) in acoustic tank with experimental model. Application of NAH in acoustic tank for the experimental model needs some investigation of reflection wave from the wall of the acoustic tank and unmeasured zone of the experimental model due to the supporting structure for it. In this study, the effect of reflection wave in the acoustic tank and unmeasured area of the experimental model when using the NAH was investigated with experiment and numerical model. From these, it is known for the error due to reflection wave can be reduced when the distance between the measurement plane and source is being shorten. Also, unmeasured area of the experimental model gives rise to some error in the estimation of the far-field acoustic pressure.

Effect of Different Misfired Source on Seismic Survey Quality (불발 음원이 탄성파탐사 성능에 미치는 영향)

  • 유해수;장재경;양승진
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.7
    • /
    • pp.75-79
    • /
    • 1999
  • The beam patterns of source array and changes in the far-field signatures are compared and analyzed each other in order to identify the seismic capability affected by the misfired source at the multi-channel seismic source array. In the primary pulse amplitude of far-field signature, the 66% of seismic capacity are sustained if approximately 40% of source are misfired among whole gun volume. When the sources with the same distances are misfired at the 154㎐, the beam width of the long- and wide-array which is identical regardless of arraying pattern. The beam width has a tendency to narrow now from 41 to 34 according to increase the volume of misfired source at the long-array beam pattern. Therefore, the source array of small volume are suitable for the shallow seismic survey because of producing adequate beam patterns with narrow beam width.

  • PDF

Design and Properties Related to Anti-reflection of 1.3μm Distributed Feedback Laser Diode (1.3μm 분포 괴환형 레이저 다이오드의 무반사 설계 및 특성)

  • Ki, Hyun-Chul;Kim, Seon-Hoon;Hong, Kyung-Jin;Kim, Hwe-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.248-251
    • /
    • 2009
  • We have investigated the effect of the quality of 1.3 um distributed feed back laser diode (DFB-LD) on the design of anti-reflection (AR) coatings. Optimal condition of AR coating to prevent internal feedback from both facets and reduce the reflection-induced intensity noise of laser diode was simulated with Macleod Simulator. Coating materials used in this work were ${Ti_3}{O_5}$ and $SiO_2$, of which design thickness were 105 nm and 165 nm, respectively. AR coating films were deposited by Ion-Assisted Deposition system. The electrical and optical properties of 1.3 um laser diode were characterized by Bar tester and Chip tester. Threshold current and slop-efficiency of DFB-LD were 27.56 mA 0.302 W/A. Far field pattern and wavelength of DFB-LD were $22.3^{\circ}(Horizontal){\times}24.4^{\circ}$ (Vertical), 1313.8 nm, respectively.

Nonlinear refractive index measurement for amorphous $As_2S_3$ thin film by Z-scan method (Z-scan 방법에 의한 비정질 $As_2S_3$ 박막의 비선형 굴절률 측정)

  • 김성규;이영락;곽종훈;최옥식;이윤우;송재봉;서호형;이일항
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.5
    • /
    • pp.342-347
    • /
    • 1998
  • We present a theoretical analysis of Gaussian beam propagation in nonlinear Kerr media by using aberration-free approximation and Huygens-Fresnel diffraction integral and obtain a simple analytic formular for Z-scan characteristics. Z-scan experiments are carried out on amorphous $As_2S_3$ thin film and compared with the theory developed, showing good agreement. The sign and the value of ${\gamma}$ have been measured at 633 nm to be $+8.65{\times}10^{-6}\textrm{cm}^2/W$. We also measured the far-field intensity profiles, which confirm again self-focusing effect.

  • PDF

Semi-active leverage-type isolation system considering minimum structural energy

  • Lin, Tzu-Kang;Lu, Lyan-Ywan;Chen, Chi-Jen
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.373-387
    • /
    • 2018
  • Semi-active isolation systems based on leverage-type stiffness control strategies have been widely studied. The main concept behind this type of system is to adjust the stiffness in the isolator to match the fundamental period of the isolated system by using a simple leverage mechanism. Although this system achieves high performance under far-field earthquakes, it is unsuitable for near-fault strong ground motion. To overcome this problem, this study considers the potential energy effect in the control law of the semi-active isolation system. The minimal energy weighting (MEW) between the potential energy and kinetic energy was first optimized through a series of numerical simulations. Two MEW algorithms, namely generic and near-fault MEW control, were then developed to efficiently reduce the structural displacement responses. To demonstrate the performance of the proposed method, a two-degree-of-freedom structure was employed as a benchmark. Numerical results indicate that the dynamic response of the structure can be effectively dampened by the proposed MEW control under both far-field and near-fault earthquakes, whereas the structural responses resulting from conventional control methods may be greater than those for the purely passive control method. Moreover, according to experimental verifications, both the generic and near-fault MEW control modes yielded promising results under impulse-like earthquakes. The practicability of the proposed control algorithm was verified.

Competition between ICME and crustal magnetic field on the loss of Mars atmosphere

  • Hwang, Junga;Jo, Gyeongbok;Kim, Roksoon;Jang, Soojeong;Cho, Kyungsuk;Lee, Jaejin;Yi, Yu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.62.3-63
    • /
    • 2017
  • The Mars Atmosphere and Volatile (MAVEN) mission has been providing valuable information on the atmospheric loss of Mars since its launch in November 2013. The Neutral Gass and Ion Mass Spectrometer (NGIMS) onboard MAVEN, was developed to analyze the composition of the Martian upper atmospheric neutrals and ions depending on various space weather conditions. We investigate a variation of upper atmospheric ion densities depending on the interplanetary coronal mass ejections (ICMEs). It is known that the Mars has a very weak global magnetic field, so upper atmosphere of Mars has been strongly affected by the solar activities. Meanwhile, a strong crustal magnetic field exists on local surfaces, so they also have a compensating effect on the upper atmospheric loss outside the Mars. The weak crustal field has an influence up to 200km altitude, but on a strong field region, especially east longitude of $180^{\circ}$ and latitude of $-50^{\circ}$, they have an influence over 1,400km altitude. In this paper, we investigated which is more dominant between the crustal field effect and the ICME effect to the atmospheric loss. At 400km altitude, the ion density over the strong crustal field region did not show a significant variation despite of ICME event. However, over the other areas, the variation associated with ICME event is far more overwhelming.

  • PDF

The Radiation Spot Size due to Wiggler Errors in a Free-Electron Laser Oscillator

  • Nam, Soon-Kwon;Park, Y.S.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1495-1501
    • /
    • 2018
  • We have developed an extended three-dimensional free-electron laser (3D FEL) code with source-dependent expansion to calculate the intensity of the radiation field and the spot size in a free-electron laser oscillator. The effect of the wiggler field errors was evaluated for the case of a planar wiggler generated by a magnet stack with parabolic shaped pole faces by using the extended three-dimensional equations in a free-electron laser oscillator based on the proposed FEL facility which is to be operated in the far-infrared and the infrared regions. The radiation spot size due to the wiggler field errors also have been analyzed for wiggler errors of ${\Delta}B/B=0.0$, 0.03, 0.06 and 0.09% at z = 1 m and z = 2 m. The effect of the diffraction of radiation field due to the wiggler field errors of ${\Delta}B/B=0.0$ and ${\Delta}B/B=0.09%$ at 200 passes was evaluated by using the extended 3D code that we developed. The variation of the curvature of the phase front and the effect of the radiation field intensity due to the wiggler field errors were also evaluated for B = 0.5 T and B = 0.7 T with the wiggler error of ${\Delta}B/B=0.09%$ at 200 passes and the results were compared to those of without errors. The intensity of the radiation, behavior of the radiation spot size and the variation of the curvature of the phase were highly sensitive to the wiggler error of ${\Delta}B/B$ > 0.09%, but were less sensitive to the wiggler errors for ${\Delta}B/B$ < 0.09% in a free-electron laser (FEL) oscillator based on the proposed FEL facility.

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

Effect of various aspects on the seismic performance of a curved bridge with HDR bearings

  • Gupta, Praveen K.;Ghosh, Goutam
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.427-444
    • /
    • 2020
  • The performance of an isolated horizontally curved continuous bridge with High Damping Rubber (HDR) Bearings has been investigated under seismic loading conditions. The effectiveness of response controls of the bridge by HDR bearings for various aspects viz. variation in ground motion characteristics, multi-directional effect, level of earthquake shaking, varying incidence angle, have been determined. Three recorded ground motions, representative of historical earthquakes along with near-field, far-field and forward directivity effects, have been considered in the study. The efficacy of the bearings with bidirectional effect considering interaction behavior of bearing and pier has also been investigated. Modeling and analysis of the bridge have been done by finite element approach. Sensitivity studies of the bridge response with respect to design parameters of the bearings for the considered ground motions have been performed. The importance of the nonlinearity of HDR bearings along with crucial design parameters has been identified. It has been observed that the HDR bearings performed well in different variations of ground motions, especially for controlling torsional moment. However, the deck displacement has been found to be increased significantly in case of Turkey ground motions, considering forward directivity effect, which needs to be paid more attention from designer point of view.

A Study on 600 V Super Junction Power MOSFET Optimization and Characterization Using the Deep Trench Filling (Deep Trench Filling 기술을 적용한 600 V급 Super Junction Power MOSFET의 최적화 특성에 관한 연구)

  • Lee, Jung-Hoon;Jung, Eun-Sik;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.270-275
    • /
    • 2012
  • Power MOSFET(metal oxide silicon field effect transistor) operate voltage-driven devices, design to control the large power switching device for power supply, converter, motor control, etc. But on-resistance characteristics depending on the increasing breakdown voltage spikes is a problem. So 600 V planar power MOSFET compare to 1/3 low on-resistance characteristics of super junction MOSFET structure. In this paper design to 600 V planar MOSFET and super junction MOSFET, then improvement of comparative analysis breakdown voltage and resistance characteristics. As a result, super junction MOSFET improve on about 40% on-state voltage drop performance than planar MOSFET.