• 제목/요약/키워드: far field

검색결과 1,917건 처리시간 0.024초

항공기 형상에 대한 근전계 RCS 측정에서 내삽 알고리즘을 이용한 측정시간 단축에 대한 분석 (An Analysis on the Reduction of Measurement Time Using Interpolation Algorithm in Near-field RCS Measurements for Aircraft Shape)

  • 박호민
    • 한국군사과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.339-346
    • /
    • 2022
  • The importance of stealth technology is increasing in modern warfare, and Radar Cross Section(RCS) is widely used as an indicator of stealth technology. It is useful to measure RCS using an image-based near-field to far-field transformation algorithm in short-range monostatic conditions. However, the near-field measurement system requires a longer measurement time compared to other methods. In this work, it is proposed to reduce the measured data using an interpolation method in azimuth angular domain. The calculated far-field RCS values according to the sampling rate is shown, and the performance of the algorithm applied with interpolation in the angular domain is presented. It is shown that measurement samples can be reduced several times by using the redundancy in the angular domain while producing results similar to the conventional method.

등가음원법에서의 직육면체형 원거리음원 배치에 관한 연구 (A Study on the Rectangular Distribution of far Field Sources in Equivalent Source Method)

  • 백광현
    • 한국음향학회지
    • /
    • 제23권1호
    • /
    • pp.40-46
    • /
    • 2004
  • 등가음원법은 일반적으로 실내에 위치한 음원에 의한 실내 음장을 모델링하기 위하여 원거리에 위치한 다수의 등가음원과 상대적으로 근방에 위치한 소수의 이미지음원들을 사용한다. 원거리음원은 일반적으로 실내 음장의 중심으로부터 적당히 먼 거리에 균일하게 위치시킨다. 이러한 원거리음원의 위치는 적절한 선택 여부에 따라, 계산 결과의 정확도와 이를 만족시키기 위해 필요한 음원의 수에 큰 영향을 미치게 된다. 본 연구에서는 등거리 상의 가상의 구형 표면에 위치시키는 기존의 방법 대신 모델링하는 실내 공간의 경계면과 닮은 꼴 형상으로 배치하여 그 영향을 조사하였다. 즉 가상의 직육면체 표면에 격자 형태로 균일하게 원거리음원들을 배치시키되, 음장의 중심으로부터의 거 리를 변화시켜가며 각 경우에 대하여 최적화 기법을 이용하여 최적의 원거리음원 위치들을 찾아내어 비교, 분석하였다.

나노입자 제거용 Far Field 메가소닉 개발 (Development of a Far Field type Megasonic for Nano Particle Removing)

  • 이양래;김현세;임의수
    • 한국정밀공학회지
    • /
    • 제30권11호
    • /
    • pp.1193-1201
    • /
    • 2013
  • Improved far field type(improved type) megasonic applicable to the cleaning equipment of single wafer processing type has been developed. In this study, to improve the uniformity of acoustic pressure distribution(APD), we utilize far field with relatively uniform APD, piezoelectric ceramic with a triangle hole in its center to prevent standing wave resulted from radial mode, and reflected wave from the wall of waveguide. On the basis of these methods, two analysis models of improved type were designed to which piezoelectric ceramic of different shape of electrode attached, and APD were analyzed by means of finite element method, and then one of them was selected by analysis results, finally, the selected model was fabricated. Test results show that the fabricated is better in the uniformity of APD than the imported and the conventional, also the fabricated shows high particle removal efficiency of 92.3% using DI water alone as a cleaning solution.

THE FAR FIELD BEHAVIOR OF A SINGLE LAYER POTENTIAL WITH LINEAR STRENGTH DISTRIBUTION ON A LINE SEGMENT

  • Kim, Do-Wan
    • Journal of applied mathematics & informatics
    • /
    • 제3권2호
    • /
    • pp.265-278
    • /
    • 1996
  • This paper is composed of the complete representation of two dimensional single layer potentials with linear strength on a straight line segment and its far field behavior which is closely related to the pose of this line segment. The far field behavior of a single layer potential on a given curve has informations of the shape of the curve.

AN ADAPTIVE FINITE DIFFERENCE METHOD USING FAR-FIELD BOUNDARY CONDITIONS FOR THE BLACK-SCHOLES EQUATION

  • Jeong, Darae;Ha, Taeyoung;Kim, Myoungnyoun;Shin, Jaemin;Yoon, In-Han;Kim, Junseok
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.1087-1100
    • /
    • 2014
  • We present an accurate and efficient numerical method for solving the Black-Scholes equation. The method uses an adaptive grid technique which is based on a far-field boundary position and the Peclet condition. We present the algorithm for the automatic adaptive grid generation: First, we determine a priori suitable far-field boundary location using the mathematical model parameters. Second, generate the uniform fine grid around the non-smooth point of the payoff and a non-uniform grid in the remaining regions. Numerical tests are presented to demonstrate the accuracy and efficiency of the proposed method. The results show that the computational time is reduced substantially with the accuracy being maintained.

산업용 인버터 구동을 위한 고효율 고내압 Field-stop IGBT 최적화 설계에 관한 연구 (Study on Industrial Inverters for Driving High-efficiency High-voltage Field-stop IGBT Optimization Design)

  • 이명환;김범준;정은식;정헌석;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제26권4호
    • /
    • pp.257-263
    • /
    • 2013
  • In this paper, Solar, Wind, fuel cell used in a Power conversion devices and industrial inverter motor to increase the efficiency of energy consumption, which is a core part of high-efficiency, high-voltage Trench Gate Field Stop IGBT was studied. For this purpose Planar type NPT IGBT and Planar type Field Stop IGBT have designed a basic structure designed to Trench Gate Field Stop IGBT based on the completed structure by analyzing the energy consumption of electrical characteristics, efficiency is a key part, high-efficiency and high-voltage inverter for industry regarding the optimization design for Trench Gate Field Stop IGBT.

동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 지진응답 해석 (Time Domain Seismic Response Analysis of Nonlinear Soil-Pile-Structure Interaction System using Inverse FFT of Dynamic Fundamental Solution)

  • 김문겸;임윤묵;조석호;박종헌;정대희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.125-132
    • /
    • 2002
  • In this study, a numerical method is developed for nonlinear analysis for soil-pile-structure interaction system in time domain. Finite elements considering material nonlinearity are used for the near field and boundary elements for the far field. In the near field, frame elements are used for modeling a pile and plane-strain elements for surrounding soil and superstructure. In. the far field, boundary element formulation using the dynamic fundamental solution is adopted and coupled with the near field. Transformation of stiffness matrices of boundary elements into time domain is performed by inverse FFT. Stiffness matrices in the near field and far field are coupled. Newmark direct time integration method is applied. Developed soil-pile-structure interaction analysis method is verified with available literature and commercial code. Also, parametric studies by developed numerical method are performed. And seismic response analysis is performed using actual earthquake records.

  • PDF

Response of self-centering braced frame to near-field pulse-like ground motions

  • Rahgozar, Navid;Moghadam, Abdolreza S.;Aziminejad, Armin
    • Structural Engineering and Mechanics
    • /
    • 제62권4호
    • /
    • pp.497-506
    • /
    • 2017
  • A low damage self-centering braced frame equipped with post-tensioning strands is capable of directing damage to replaceable butterfly-shaped fuses. This paper investigates the seismic performance of rocking braced frame under near-field pulse-like ground motions compared to far-field records. A non-linear time history analysis is performed for twelve self-centering archetypes. A sensitivity analysis is carried out to examine the influences of ground motion types and modeling parameters. Findings represent the proper efficiency of the self-centering system under both far-field and near-field pulse-like ground motions.

LONGITUDINAL WAVES, STORING AND AMPLIFYING CAPABILITY OF INFORMATION IN WATER MOLECULES AND QUANTUM RESONANCE SPECTROMETER

  • Oh, Hung-Kuk
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1996년도 추계학술발표회 논문집
    • /
    • pp.18-28
    • /
    • 1996
  • The outer-most electrons of metal atoms and the remaining valence electrons of any molecular atoms make three-dimensional crystallizing $\pi$-bondings. The rotating electrons on the three-dimensional crystallizing $\pi$-bonding orbitals of atoms make $\pi$-far infrared rays. Longitudinal wave is a propagation of a bundle of $\pi$-far infrared rays, which are produced by a dynamic impact on a solid bar. The $\pi$-far infrared rays make three-dimensional crystallizing $\pi$-bondings in the material, which reproduce the same $\pi$-far infrared rays. If a current signal is input into water molecules under a given electric potential field with $\pi$-far infrared rays (input information), the signal can be amplified because the $\pi$-far infrared rays make the $\pi$-bondings, which reduce electric resistance. The three-dimensional crystallizing $\pi$-bondings can induce normal electrons to move from one orbital to next one with a aid of potential electric field. Quantum Resonance Spectrometer is composed of tesla coil absorbing $\pi$-far infrared rays, tesla coil emitting varying electromagnetic waves signal generator, signal storage, human body amplifier, signal analyzer and data indicator. The absorbing tesla coil making varying magnetic field and downward and upward electric field, which resonates the $\pi$-far infrared rays coming out from specimen and absorbs them. The modulated current signal from the input square signal can generate and emit varying electromagnetic waves from the tesla coil. The varying electro-magnetic waves make the three-dimensional crystallizing $\pi$-bondings and the $\pi$-far infrared rays in the water molecules.

  • PDF

Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect

  • Sonmezer, Yetis Bulent;Celiker, Murat
    • Geomechanics and Engineering
    • /
    • 제20권2호
    • /
    • pp.131-146
    • /
    • 2020
  • Evaluation of earthquake impacts in settlements with a high risk of earthquake occurrence is important for the determination of site-specific dynamic soil parameters and earthquake-resistant structural planning. In this study, dynamic soil properties of Karliova (Bingol) city center, located near to the intersection point of the North Anatolian Fault Zone and the East Anatolian Fault Zone and therefore having a high earthquake risk, were investigated by one-dimensional equivalent linear site response analysis. From ground response analyses, peak ground acceleration, predominant site period, 0.2-sec and 1-sec spectral accelerations and soil amplification maps of the study area were obtained for both near-field and far-field earthquake effects. The average acceleration spectrum obtained from analysis, for a near-field earthquake scenario, was found to exceed the design spectra of the Turkish Earthquake Code and Eurocode 8. Yet, the average acceleration spectrum was found to remain below the respective design spectra of the two codes for the far-field earthquake scenario. According to both near- and far-field earthquake scenarios in the study area, the low-rise buildings with low modal vibration durations are expected to be exposed to high spectral acceleration values and high-rise buildings with high modal vibration durations will be exposed to lower spectral accelerations. While high amplification ratios are observed in the north of the study area for the near-distance earthquake scenario, high amplification ratios are observed in the south of the study area for the long-distance earthquake scenario.