• Title/Summary/Keyword: family 1 glycosyl hydrolase

Search Result 53, Processing Time 0.023 seconds

Identification and Characterization of Glycosyl hydrolase family genes from the Earthworm (지렁이의 Gycosyl hydrolasse family 유전자들의 동정과 특성에 관한 연구)

  • Lee, Myung Sik;Tak, Eun Sik;Ahn, Chi Hyun;Park, Soon Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.48-58
    • /
    • 2009
  • Glycosyl hydrolases (GH, EC 3.2.1.-) are key enzymes which can hydrolyze the glycosidic bonds between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. The new enzyme nomenclature of glycoside hydrolases is based on their amino acid sequence similarity and structural features. Here, we examined the glycosyl hydrolase family(GHF) genes reported from earthworm species. Among overall 115 GHFs, 12 GHFs could be identified from earthworm species through CAZy database. Of 12 GHF group genes, five genes including GHF2, 5, 17, 18, 20 are thought to be potent for industrial applications. The alignment of these genes with same genes from other animal species exhibited high sequence homology and some important amino acid residues necessary for enzyme activity appeared to be conserved. These genes can be utilized as a pest control agent or applicable to the food industry, clinical therapeutics and organic wastes disposition.

Screening and Characterization of an Enzyme with ${\beta}-Glucosidase$ Activity from Environmental DNA

  • Kim, Soo-Jin;Lee, Chang-Muk;Kim, Min-Young;Yeo, Yun-Soo;Yoon, Sang-Hong;Kang, Han-Cheol;Koo, Bon-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.905-912
    • /
    • 2007
  • A novel ${\beta}-glucosidase$ gene, bglA, was isolated from uncultured soil bacteria and characterized. Using genomic libraries constructed from soil DNA, a gene encoding a protein that hydrolyzes a fluorogenic analog of cellulose, 4-methylumbelliferyl ${\beta}-D-cellobioside$ (MUC), was isolated using a microtiter plate assay. The gene, bglA, was sequenced using a shotgun approach, and expressed in E. coli. The deduced 55-kDa amino acid sequence for bglA showed a 56% identity with the family 1 glycosyl hydrolase Chloroflexus aurantiacus. BglA included two conserved family 1 glycosyl hydrolase regions. When using $p-nitrophenyl-{\beta}-D-glucoside$ (pNPG) as the substrate, the maximum activity of the purified ${\beta}-glucosidase$ exhibited at pH 6.5 and $55^{\circ}C$, and was enhanced in the presence of $Mn^{2+}$. The $K_m\;and\;V_{max}$ values for the purified enzyme with pNPG were 0.16 mM and $19.10{\mu}mol/min$, respectively. The purified BglA enzyme hydrolyzed both pNPG and $p-nitrophenyl-{\beta}-D-fucoside$. The enzyme also exhibited substantial glycosyl hydrolase activities with natural glycosyl substrates, such as sophorose, cellobiose, cellotriose, cellotetraose, and cellopentaose, yet low hydrolytic activities with gentiobiose, salicin, and arbutin. Moreover, BglA was able to convert the major ginsenoside $Rb_1$ into the pharmaceutically active minor ginsenoside Rd within 24 h.

Isolation and Characterization of Endo-$\beta$-1,4-glucanase from the Midgut of the Earthworm, Eisenia andrei (지렁이 중장에서 발현되는 Endo-$\beta$-1,4-glucanase의 동정 및 특성에 관한 연구)

  • Lee Myung Sik;Cho Sung Jin;Tak Eun Sik;Hur So Young;Lee Jong Ae;Park Bum Joon;Cho Hyun Ju;Shin Chuog;Park Soon Cheol
    • The Korean Journal of Soil Zoology
    • /
    • v.8 no.1_2
    • /
    • pp.7-12
    • /
    • 2003
  • Endogeneous endoglucanase (EC 3.2.1.4) cDNA was cloned from a representative species (Eisenia anderi) of the earthworm family Lumbricidae. Endoglucanase from the midgut of the earthworm is composed of 456 amino acids and belongs to glycosyl hydrolase family 9 (GHF9), sharing high homologies (50-51 %) with those of selected termite and crayfish. This endoglucanase consists of three consensus catalytic domains found in most microbial cellulases. A phylogenetic tree was constructed using the amino acid squence data matched through the BLASTX program and showed that GHF9 families could be divided into four groups of arthropoda, bacteria, plant and annelida.

  • PDF

Cloning and Expression of A Bacillus licheniformis Cellulase Gene (Bacillus licheniformis WL-12의 cellulase 유전자 클로닝과 발현)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.313-318
    • /
    • 2006
  • A thermophilic bacterium producing the extracellular cellulase was isolated from soybean paste, and the isolate WL-12 has been identified as Bacillus licheniformis on the basis on its 16S rRNA sequence, morphology and biochemical properties. A gene encoding the cellulase of B. licheniformis WL-12 was cloned and its nucleotide sequence was determined. This cellulase gene, designated celA, consisted of 1,551 nucleotides, encoding a polypeptide of 517 amino acid residues. The gene product contained catalytic domain and cellulose binding domain. The deduced amino acid sequence was highly homologous to those of cellulases of B. licheniformis, B. subtilis and B. amytoliquefaciens belonging to the glycosyl hydrolase family 5. When the celA gene was highly expressed using a strong B. subtilis promoter, the extracellular cellulase was produced up to 7.0 units/ml in B. subtilis WB700.

Cloning and Characterization of endo-β-1,4-glucanase genes from the Midgut of the Earthworm, Eisenia andrei (지렁이 중장에서 발현되는 endo-β-1,4-glucanase 유전자들의 클로닝과 특성에 관한 연구)

  • Lee, Myung-Sik;Park, Sang-Kil;Tak, Eun-Sik;Ahn, Chi-Hyun;Kim, Hye-Ryung;Park, Soon-Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.3
    • /
    • pp.80-89
    • /
    • 2007
  • Two endogenous endo-${\beta}$-1,4-D-glucanase (EGase, EC 3.2.1.4) cDNAs were cloned from the midgut of the earthworm Eisenia anderi, and named EaEG2 and EaEG3, respectively. A sequence of 1,368 bp was determined and the coding region is composed of 456 amino acid residues including the initiation methionine. The N-terminal region of 20 residues in the deduced sequence was regarded as the signal peptide. These EGases belong to glycosyl hydrolase family 9 (GHF9) and showed high levels of identity(51-55%) with selected termite, cockroache, crayfish and mollusc EGases. The EGases of earthworm consist of three consensus catalytic domains found in most microbial cellulases. A phylogenetic tree was constructed using the deduced amino acid sequence data matched through the BLASTX program and showed that GHF9 families could be divided into five groups of arthropoda, bacteria, plant, annelida and mollusc.

  • PDF

Molecular Cloning, Overexpression, and Enzymatic Characterization of Glycosyl Hydrolase Family 16 ${\beta}$-Agarase from Marine Bacterium Saccharophagus sp. AG21 in Escherichia coli

  • Lee, Youngdeuk;Oh, Chulhong;Zoysa, Mahanama De;Kim, Hyowon;Wickramaarachchi, Wickramaarachchige Don Niroshana;Whang, Ilson;Kang, Do-Hyung;Lee, Jehee
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.913-922
    • /
    • 2013
  • An agar-degrading bacterium was isolated from red seaweed (Gelidium amansii) on a natural seawater agar plate, and identified as Saccharophagus sp. AG21. The ${\beta}$-agarase gene from Saccharophagus sp. AG21 (agy1) was screened by long and accurate (LA)-PCR. The predicted sequence has a 1,908 bp open reading frame encoding 636 amino acids (aa), and includes a glycosyl hydrolase family 16 (GH16) ${\beta}$-agarase module and two carbohydrate binding modules of family 6 (CBM6). The deduced aa sequence showed 93.7% and 84.9% similarity to ${\beta}$-agarase of Saccharophagus degradans and Microbulbifer agarilyticus, respectively. The mature agy1 was cloned and overexpressed as a His-tagged recombinant ${\beta}$-agarase (rAgy1) in Escherichia coli, and had a predicted molecular mass of 69 kDa and an isoelectric point of 4.5. rAgy1 showed optimum activity at $55^{\circ}C$ and pH 7.6, and had a specific activity of 85 U/mg. The rAgy1 activity was enhanced by $FeSO_4$ (40%), KCl (34%), and NaCl (34%), compared with the control. The newly identified rAgy1 is a ${\beta}$-agarase, which acts to degrade agarose to neoagarotetraose (NA4) and neoagarohexaose (NA6) and may be useful for applications in the cosmetics, food, bioethanol, and reagent industries.

Identification and molecular characterization of the chitinase gene, EaChi, from the midgut of the earthworm, Eisenia andrei (붉은줄지렁이 (Eisenia andrei) 중장에서 발현되는 chitinase 유전자, EaChi의 동정 및 분자생물학적 특성에 관한 연구)

  • Tak, Eun Sik;Kim, Dae hwan;Lee, Myung Sik;Ahn, Chi Hyun;Park, Soon Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.3
    • /
    • pp.31-37
    • /
    • 2010
  • Chitinases (EC 3.2.1.14) hydrolyze the ${\beta}$-1,4-linkages in chitin, the second most abundant polymer of N-acetyl-${\beta}$-D-glucosamine which is a structural component of protective biological matrices such as fungal cell walls and insect exoskeletons. The glycosyl hydrolases 18 family including chitinases is an ancient gene family widely expressed in archea, prokaryotes and eukaryotes. Since earthworms live in the soil with a lot of microbial activities and fungi are supposed to be a major component of the diet of earthworm, it has been reported that there would be appropriate immune system to protect themselves from microorganisms attacks. In this study, the novel chitinase, EaChi, from the midgut of earthworm, Eisenia andrei, were identified and characterized. To obtain full-length cDNA sequence of chitinase, RT-PCR and RACE-PCR analyses were carried out by using the previously identified EST sequence amongst cDNA library established from the midgut of E. andrei. EaChi, a partial chitinase gene, was composed of 927 nucleotides encoding 309 amino acids. By the multiple sequence alignments of amino acids with other different species, it was revealed that EaCHI is a member of glycosyl hydrolases 18 family, which has two highly conserved domains, substrate binding and catalytic domain.

Comparison of Acidic pH and Temperature Stabilities between Two Bacillus Mannanases Produced from Recombinant Escherichia coli (재조합 대장균으로부터 생산된 Bacillus 속 균주 유래 Mannanases의 내산성과 열안정성 비교)

  • Jeon, Ho Jin;Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.327-333
    • /
    • 2014
  • Two genes encoding the mannanase of Bacillus sp. YB-1401 and B. amyloliquefaciens YB-1402, which had been isolated at acidic pH as mannanase producers, were each cloned into Escherichia coli, and sequenced. Both mannanase genes consisted of 1,080 nucleotides, encoding polypeptides of 360 amino acid residues. The deduced amino acid sequences of the two mannanase genes differed by four amino acid residues different, and were highly homologous to those of mannanases belonging to the glycosyl hydrolase family 26. Comparison of two mannanases produced from recombinant E. coli indicated that His-tagged mannanase of YB-1402 (HtMAN1402) was more stable than that of YB-1401 at acidic pH and high temperature. In particular, HtMAN1402 retained more than 50% of its activity at pH 3.0 after 4 h of pre-incubation, suggesting the enzyme is a valuable candidate for use as a feed additive. In addition, thermostability of the two mannanases was found to be enhanced by $Ca^{2+}$ ions.

A Novel Glycosyl Hydrolase Family 16 β-Agarase from the Agar-Utilizing Marine Bacterium Gilvimarinus agarilyticus JEA5: the First Molecular and Biochemical Characterization of Agarase in Genus Gilvimarinus

  • Lee, Youngdeuk;Jo, Eunyoung;Lee, Yeon-Ju;Hettiarachchi, Sachithra Amarin;Park, Gun-Hoo;Lee, Su-Jin;Heo, Soo-Jin;Kang, Do-Hyung;Oh, Chulhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.776-783
    • /
    • 2018
  • The agarase gene gaa16a was identified from a draft genome sequence of Gilvimarinus agarilyticus JEA5, an agar-utilizing marine bacterium. Recently, three agarase-producing bacteria, G. chinensis, G. polysaccharolyticus, and G. agarilyticus, in the genus Gilvimarinus were reported. However, there have been no reports of the molecular characteristics and biochemical properties of these agarases. In this study, we analyzed the molecular characteristics and biochemical properties of agarases in Gilvimarinus. Gaa16A comprised a 1,323-bp open reading frame encoding 441 amino acids. The predicted molecular mass and isoelectric point were 49 kDa and 4.9, respectively. The amino acid sequence of Gaa16A showed features typical of glycosyl hydrolase family 16 (GH16) ${\beta}$-agarases, including a GH16 domain, carbohydrate-binding region (RICIN domain), and signal peptide. Recombinant Gaa16A (excluding the signal peptide and carbohydrate-binding region, rGaa16A) was expressed as a fused protein with maltose-binding protein at its N-terminus in Escherichia coli. rGaa16A had maximum activity at $55^{\circ}C$ and pH 7.0 and 103 U/mg of specific activity in the presence of 2.5 mM $CaCl_2$. The enzyme hydrolyzed agarose to yield neoagarotetraose as the main product. This enzyme may be useful for industrial production of functional neoagaro-oligosaccharides.

Molecular Cloning and Sequence Analysis of Coelomic Cytolytic Factor-like Gene from the Midgut of the Earthworm, Eisenia Andrei (줄지렁이 중장에서 분리한 Coelomic cytolytic factor-유사 유전자의 클로닝 및 염기서열 분석에 관한 연구)

  • Baek, Nam Sook;Lee, Myung-Sik;Park, Sang-Kil;Kim, Dae-hwan;Tak, Eun-Sik;Ahn, Chi-Hyun;Sun, Zhenjun;Park, Soon Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.4
    • /
    • pp.64-73
    • /
    • 2008
  • The cDNA of CCF (coelomic cytolytic factor)-like gene (EC 3.2.1.16), a kind of glycosyl hydorlase, was isolated and cloned from the midgut of the earthworm Eisenia anderi. The size of nucleotide sequence appeared to be 1,152 bp and its predicted coding region was composed of 384 amino acid residues including the initiation methionine. The 17 residues at N-terminal end in the deduced amino acid sequence were regarded to be a signal peptide. Based on the amino acid sequence analysis, it appeared that this CCF-like protein could belong to glycosyl hydrolase family 16 (GHF16) and showed a high sequence homology of about 79~99% with CCF and CCF-like proteins from other earthworm species. The CCFs and CCF-like proteins from various earthworm species exhibited a 100% homology in the polysacchride-binding motif and glucanase motif. It has been reported that the CCFs isolated from E. fedita appeared to show a broader pattern recognition specificity than those from other earthworm species because this species resides in decaying organic matter showing very high microbial activity, implying that CCF-like protein isolated in this study from E. andrei might exhibit a broad substrate specificity that is a useful characteristic for industrial application. A phylogenetic analysis using the deduced amino acid sequences of CCF-related proteins through the BLASTX revealed that GHF16 families could be divided into three groups of metazoa, viriplantae and eubacteria subfamily. Subsequently the CCF-related proteins of metazoa subfamily could clearly be subgroup into lophotrochozoan and edysozoan type including a deuterostome origin. Further understanding of the biological properties of E. andrei CCF-like protein should be addressed to regulate the ${\beta}$-D-glucan hydrolysis and production for the industrial uses.

  • PDF