This study was performed in order to evaluate the accuracy and the usefulness of the fine needle aspiration cytology (FNAC) on the breast lesions, to compare the FNAC findings between fibroadenoma and fibrocystic disease, and to determine the accuracy of cytologic Black's nuclear grading. The subjects in this study were 110 cases of FNAC, later confirmed by biopsy, between January 1988 and December 1991. The results are as follows ; 1 Comparison between the results of the FNAC and the histologic findings revealed that FNAC had a sensitivity of 96.6%, a specificity of 100%, a false negative rate of 3.4% a false positive rate of 0.0%, and an overall diagnostic accuracy of 98.2%. 2 Semi-quantitative evaluation of epithelial celluarity, stroma, and naked nuclei in the smears of aspirate showed high celluarity in 56.7% of the aspirates from fibroadenoma and in 0% of those from fibrocystic disease. Abundant stroma was found in 46.7% of the fibroadenoma and none of fibrocystic disease. Numerous naked nuclei were found in 60% of the fibroadenoma and 4.5% of the fibrocystic disease. The overall diagnostic accuracy was 98% 3. In order to determine the accuracy of Black's nuclear grading of FNAC on breast carcinoma, we retrospectively studied 38 cases of ductal carcinomas diagnosed by FNAC with subsequent histologic confirmation. The concordance rate with histology was 94.7%. These results suggest that FNAC of breast is a diagnostically accurate method, and provide for the preoperative differential diagnosis between fibroadenoma and fibrocystic disease. Our results also suggest that the evaluation of nuclear grading of FNAC can predict clinical outcome and decide the way of management of breast cancer.
신뢰성 있는 다중태그 인식은 최근 다중태그 애플리케이션 이슈 중의 하나이다. 하지만, 데이터 확보 단계에서 다중태그 리더를 통한 신뢰성 있는 다중태그 인식은 리더간의 충돌, 소음, 태그가 부착된 물건들의 이동 등으로 발생하는 거짓양성인식, 거짓음성인식, 비 인식같은 신뢰성 없는 인식으로 인하여 신뢰서 있는 데이터를 확보하는데 어려움을 겪고 있다. 따라서 본 논문은 다중태그 리더를 통한 인식에서 발생되는 이러한 문제점들을 해결하기 위하여 먼저 성능평가 기준을 소개하고, 1) 수신된 신호 강도 표시기 (RSSI)을 이용한 최소 중첩인식공간 설정방식, 2)시-공간 분할 처리방식, 3) 큰 사이즈의 이중 태그 부착 방식등과 같은 3가지 해결방안을 제시하였다. 그리고 본 논문은 멀티 RFID 리더가 설치된 스마트 사무실에서 태그의 성공 인식률 계산을 통하여 제안된 방법의 성능개선을 보여주었다.
Background: Cervical cancer is the second most common cancer among women in many populations. While the Pap smear is a well established screening test it suffers from both false-positive and false-negative results in diagnosis of cancers and precancerous states. In this study, immunocytochemistry of the P16 biomarker and HPV-PCR were compared for their diagnostic potential. Materials and methods: In the study, we obtained pairs of specimens from 45 women with cervical dysplasia. One sample was placed in a liquid-based solution, and processed for staining of sections with antibodies to P16. HPV-PCR was performed on the other and the results obtained were analyzed by T-test using SPSS v. 15. Results: Using HPV-PCR 71% of the samples were found to be infected with either HPV 16 or HPV 18, and the rate of infection did not have a statistically significant relationship with higher grades of dysplasia (p= 0.253). In contrast, with immunocytochemistry evaluation of P16, 64% of the specimens were positive, but the percentage of positive results significantly increased with higher grades of dysplasia (p= 0.0001). Conclusion: Employment of the P16 marker as an optional test might be preferable over HPV-PCR for cervical dysplasia in our geographical region.
모바일 운영체제 중 안드로이드의 점유율이 높아지면서 모바일 악성코드 위협은 대부분 안드로이드에서 발생하고 있다. 그러나 정상앱이나 악성앱이 진화하면서 권한 등의 단일 특징점으로 악성여부를 연구하는 방법은 유효성 문제가 발생하여 다양한 특징점 추출 및 기계학습을 통해 이를 극복하고자 한다. 본 논문에서는 APK 파일에서 구동에 필요한 다섯 종류의 특징점들을 안드로가드라는 정적분석 툴을 사용하여 학습데이터의 특성을 추출한다. 또한 추출된 중요 특징점을 기반으로 모델링을 하는 세 가지 방법을 제시한다. 첫 번째 방법은 보안 전문가에 의해 엄선된 132가지의 특징점 조합을 바탕으로 모델링하는 것이다. 두 번째는 학습 데이터 7,000개의 앱에서 발생 빈도수가 높은 상위 99%인 8,004가지의 특징점들 중 랜덤포레스트 분류기를 이용하여 특성중요도가 가장 높은 300가지를 선정 후 모델링 하는 방법이다. 마지막 방법은 300가지의 특징점을 학습한 다수의 모델을 통합하여 하나의 가중치 투표 모델을 구성하는 방법이다. 추가적으로 오탐률 및 미탐률을 개선하기 위해 권한 정보를 모두 제외하여 특징점을 재구성하고 위와 같은 환경으로 모델링하였다. 최종적으로 가중치 투표 모델인 앙상블 알고리즘 모델을 사용하여 97.8%로 정확도가 개선되었고 오탐률은 1.9%로 성능이 개선된 것이 확인되었다.
Objectives: Quantitative structure-activity relationship (QSAR) is one of the effective alternatives to animal testing, but its credibility in terms of toxicity prediction has been questionable. Thus, this work aims to evaluate its predictive capacity and find ways of improving its credibility. Methods: Using $TOPKAT^{(R)}$, OECD toolbox, and $Derek^{(R)}$, all of which have been applied world-wide in the research, industrial, and regulatory fields, an analysis of prediction credibility markers including accuracy (A), sensitivity (S), specificity (SP), false negative (FN), and false positive (FP) was conducted. Results: The multi-application of QSARs elevated the precision credibility relative to individual applications of QSARs. Moreover, we found that the type of chemical structure affects the credibility of markers significantly. Conclusions: The credibility of individual QSAR is insufficient for both the prediction of chemical toxicity and regulation of hazardous chemicals. Thus, to increase the credibility, multi-QSAR application, and compensation of the prediction deviation by chemical structure are required.
데이터의 활용도와 중요성이 점차 높아짐에 따라 데이터와 관련된 사고와 피해는 점점 증가 하고 있으며, 특히 내부자에 의한 사고는 그 위험성이 더 높다. 이런 내부자의 공격은 전통적인 보안 시스템으로 방어하기 힘들어, 규칙 기반의 이상 행동 탐지 방법이 널리 활용되어오고 있다. 하지만, 새로운 공격 방식 및 새로운 환경과 같이 변화에 유연하게 적응하지 못하는 문제점을 가지고 있다. 본 논문에서는 이에 대한 해결책으로서 통계적 마르코프 모델 기반의 적응형 이상 이동 탐지 프레임워크를 제안하고자 한다. 이 프레임워크는 사람의 이동에 초점을 맞추어 내부자에 의한 위험을 사전에 탐지한다. 이동에 직접적으로 영향을 주는 환경 요소와 지속적인 통계 학습을 통해 변화하는 환경에 적응함으로써 오탐지와 미탐지를 최소화하도록 설계되었다. 프레임워크를 활용한 실험에서는 0.92의 높은 F2-점수를 얻을 수 있었으며, 나아가 정상으로 보여지지만, 의심해볼 이동까지 발견할 수 있었다. 통계 학습과 환경 요소를 바탕으로 행동과 관련된 데이터와 모델링 알고리즘을 다양화 시켜 적용한다면 보다 더 범위 넓은 비정상 행위에 대해 탐지할 수 있는 확장성을 제공한다.
Cannabis is one of the most abused drugs in Korea. The main psychoactive component in cannabis, Δ9-tetrahydrocannabinol, is metabolized to 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) and THCCOOH-glucuronide (THCCOOH-glu) in the human liver, whereby the amount of THCCOOH-glu found in urine is twice as high as that of THCCOOH. The analytical process adapted by the majority of urine drug-testing programs involves a two-step method consisting of an initial immunoassay-based screening test followed by a confirmatory test if the screening test result is positive. In this study, a qualitative gas chromatography-mass spectrometry (GC-MS) method was developed and validated for the detection of THCCOOH in human urine, where THCCOOH-glu was converted into THCCOOH by alkaline hydrolysis. For purification of the urine extract prior to instrumental analysis, high-speed centrifugation was used to minimize interference. In addition, an injection-port derivatization method using ethyl acetate and N,O-bis(trimethylsilyl)-trifluoroacetamide containing 1 % trimethylchlorosilane was employed to reduce the time required for derivatization, and an aliquot of the final solution was injected into the GC-MS. The method was validated by measuring the selectivity, limit of detection (LOD), and repeatability. The sensitivity, specificity, precision, accuracy, Kappa, F-measure, false positive, and false negative rate were determined by comparing the GC-MS results with those obtained using the immunoassay. The LOD was determined to be 0.32 ng/mL, while the repeatability was within 9.1 % for THCCOOH. Furthermore, a comparison study was carried out, whereby the screening immunoassay exhibited a sensitivity of 86.4 % and a specificity of 100 % compared to GC-MS. The applicability of the developed method was examined by analyzing spiked urine and forensic urine samples obtained from suspected cannabis abusers (n = 221).
Unlike other critical forest diseases, pine pitch canker in Korea has shown rather mild symptoms of partial loss of crown foliage and leaf discoloration. This study used high-resolution satellite images to detect and monitor canopy decline by pine pitch canker. To enhance the subtle change of canopy reflectance in pitch canker damaged tree crowns, multi-temporal analysis was applied to two KOMPSAT multispectral images obtained in 2011 and 2015. To assure the spectral consistency between the two images, radiometric corrections of atmospheric and shadow effects were applied prior to multi-temporal analysis. The normalized difference vegetation index (NDVI) of each image and the NDVI difference (${\Delta}NDVI=NDVI_{2015}-NDVI_{2011}$) between two images were derived. All negative ΔNDVI values were initially considered any pine stands, including both pitch canker damaged trees and other trees, that showed the decrease of crown foliage from 2011 to 2015. Next, $NDVI_{2015}$ was used to exclude the canopy decline unrelated to the pitch canker damage. Field survey data were used to find the spectral characteristics of the damaged canopy and to evaluate the detection accuracy from further analysis.Although the detection accuracy as assessed by limited number of field survey on 21 sites was 71%, there were also many false alarms that were spectrally very similar to the damaged canopy. The false alarms were mostly found at the mixed stands of pine and young deciduous trees, which might invade these sites after the pine canopy had already opened by any crown damages. Using both ${\Delta}NDVI$ and $NDVI_{2015}$ could be an effective way to narrow down the potential area of the pitch canker damage in Korea.
코로나19의 영향으로 온라인 활동이 늘어나면서 인터넷 접속량도 늘어나고 있다. 하지만 악의적인 사용자에 의해서 네트워크 공격도 다양해지고 있으며 그중에서 DDoS 공격은 해마다 증가하는 추세이다. 이러한 공격은 침입 탐지 시스템에 의해서 탐지되며 조기에 차단할 수 있다. 침입 탐지 알고리즘을 검증하기 위해 다양한 데이터 세트를 이용하고 있으나 본 논문에서는 최신 트래픽 데이터 세트인 CICIDS2017를 이용한다. 의사 결정 트리를 이용하여 DDoS 공격 트래픽을 분석하였다. 중요도가 높은 결정적인 속성(Feature)을 찾아서 해당 속성에 대해서만 의사 결정 트리를 진행하여 정확도를 확인하였다. 그리고 위양성 및 위음성 트래픽의 내용을 분석하였다. 그 결과 하나의 속성은 98%, 두 가지 속성은 99.8%의 정확도를 각각 나타냈다.
이 연구는 코로나19가 야기한 인포데믹 상황에서 유튜브상에서 확산된 코로나19 백신 관련 영상의 주요 특성과 이용자 반응의 차이를 알아보고자 하였다. 코로나19 백신 관련 영상 579개에 대한 내용분석 결과, 허위정보는 모두 개인 채널이 저자인 것으로 나타났으며, 기관 및 단체, 언론사, 정부 채널에서는 사실 중심 보도와 더불어 허위정보에 대한 보도도 한 축을 이룬 것으로 나타났다. 진보 성향의 채널은 백신 접종을 찬성하는 긍정적 정서의 비율이 높았고, 보수 성향의 채널은 백신 접종에 반대하는 부정적 정서의 비율이 높았다. 백신 접종이 시작된 이후에 정부 채널의 영상이 증가했고, 긍정적 정서의 영상이 증가한 것으로 나타났다. 좋아요 수에 영향을 미치는 영상의 특성 요인을 회귀분석을 통해 알아본 결과, 개인 전문가 영상, 진보 성향 채널의 영상이 좋아요를 더 많이 받은 것으로 나타났다. 연구 결과를 종합하여 소셜미디어를 활용한 코로나19 백신 관련 정부 정책 홍보 방안에 대해 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.