• Title/Summary/Keyword: false alarms

Search Result 199, Processing Time 0.026 seconds

The Study of Improved Safety of Signalling System using Communication (통신에 의한 신호시스템의 안전성 확보에 관한 연구)

  • Baek, Jong-Hyen;Wang, Jong-Bae;Byun, Yeun-Sub;Park, Hyun-Jun;Han, Young-Jae;Kim, Kil-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1368-1370
    • /
    • 2000
  • The automotive environment presents to the FMCW radar sensor a multitude of moving and fixed targets and the sensor must detect and track only the targets which may pose a threat of collision or passengers accident. The sensor must function accurately in the presence of background echoes generated by moving and fixed targets, ground reflections, atmospheric noises, including rains, fog, and, snow and noise generated within the receiver. False detection of the desired target in this environment may issue false alarms. That may be dangerous to the passenger and the vehicle. A high false alarm rate is totally unacceptable. The false alarm mechanism consists of noise peaks, crossing the threshold and the undesired response of the system to off lane targets which are not potentially hazardous to the radar equipped vehicle. This paper presents an improve technique safety performance for driver-less operation using FMCW radar sensors.

  • PDF

Improved PCA method for sensor fault detection and isolation in a nuclear power plant

  • Li, Wei;Peng, Minjun;Wang, Qingzhong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.146-154
    • /
    • 2019
  • An improved principal component analysis (PCA) method is applied for sensor fault detection and isolation (FDI) in a nuclear power plant (NPP) in this paper. Data pre-processing and false alarm reducing methods are combined with general PCA method to improve the model performance in practice. In data pre-processing, singular points and random fluctuations in the original data are eliminated with various techniques respectively. In fault detecting, a statistics-based method is proposed to reduce the false alarms of $T^2$ and Q statistics. Finally, the effects of the proposed data pre-processing and false alarm reducing techniques are evaluated with sensor measurements from a real NPP. They are proved to be greatly beneficial to the improvement on the reliability and stability of PCA model. Meanwhile various sensor faults are imposed to normal measurements to test the FDI ability of the PCA model. Simulation results show that the proposed PCA model presents favorable performance on the FDI of sensors no matter with major or small failures.

An Alert Data Mining Framework for Intrusion Detection System (침입탐지시스템의 경보데이터 분석을 위한 데이터 마이닝 프레임워크)

  • Shin, Moon-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.459-466
    • /
    • 2011
  • In this paper, we proposed a data mining framework for the management of alerts in order to improve the performance of the intrusion detection systems. The proposed alert data mining framework performs alert correlation analysis by using mining tasks such as axis-based association rule, axis-based frequent episodes and order-based clustering. It also provides the capability of classify false alarms in order to reduce false alarms. We also analyzed the characteristics of the proposed system through the implementation and evaluation of the proposed system. The proposed alert data mining framework performs not only the alert correlation analysis but also the false alarm classification. The alert data mining framework can find out the unknown patterns of the alerts. It also can be applied to predict attacks in progress and to understand logical steps and strategies behind series of attacks using sequences of clusters and to classify false alerts from intrusion detection system. The final rules that were generated by alert data mining framework can be used to the real time response of the intrusion detection system.

TsCNNs-Based Inappropriate Image and Video Detection System for a Social Network

  • Kim, Youngsoo;Kim, Taehong;Yoo, Seong-eun
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.677-687
    • /
    • 2022
  • We propose a detection algorithm based on tree-structured convolutional neural networks (TsCNNs) that finds pornography, propaganda, or other inappropriate content on a social media network. The algorithm sequentially applies the typical convolutional neural network (CNN) algorithm in a tree-like structure to minimize classification errors in similar classes, and thus improves accuracy. We implemented the detection system and conducted experiments on a data set comprised of 6 ordinary classes and 11 inappropriate classes collected from the Korean military social network. Each model of the proposed algorithm was trained, and the performance was then evaluated according to the images and videos identified. Experimental results with 20,005 new images showed that the overall accuracy in image identification achieved a high-performance level of 99.51%, and the effectiveness of the algorithm reduced identification errors by the typical CNN algorithm by 64.87 %. By reducing false alarms in video identification from the domain, the TsCNNs achieved optimal performance of 98.11% when using 10 minutes frame-sampling intervals. This indicates that classification through proper sampling contributes to the reduction of computational burden and false alarms.

3D Vision-based Security Monitoring for Railroad Stations

  • Park, Young-Tae;Lee, Dae-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.451-457
    • /
    • 2010
  • Increasing demands on the safety of public train services have led to the development of various types of security monitoring systems. Most of the surveillance systems are focused on the estimation of crowd level in the platform, thereby yielding too many false alarms. In this paper, we present a novel security monitoring system to detect critically dangerous situations such as when a passenger falls from the station platform, or when a passenger walks on the rail tracks. The method is composed of two stages of detecting dangerous situations. Objects falling over to the dangerous zone are detected by motion tracking. 3D depth information retrieved by the stereo vision is used to confirm fallen events. Experimental results show that virtually no error of either false positive or false negative is found while providing highly reliable detection performance. Since stereo matching is performed on a local image only when potentially dangerous situations are found; real-time operation is feasible without using dedicated hardware.

Performance Analysis of Energy Detection Spectrum Sensing Using Adaptive Threshold through Controlling False alarms (오경보 확률 제어를 통한 적응적 임계치 사용 에너지 검출 스펙트럼 센싱의 성능 분석)

  • Seo, SungIl;Lee, MiSun;Kim, Jinyoung
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • In this paper, we propose system model to solve conventional threshold problem of using fixed false alarm for energy spectrum sensing. Spectrum sensing reliability is ensured when Secondary user have high SNR. Thus, it is not reasonable using fixed optional false alarm without considering CR user's SNR. So, we propose adaptive threshold method. adaptive threshold is decided by controling FA according to CR user's SNR.

Dwell Time Optimization of Alert-Confirm Detection for Active Phased Array Radars

  • Kim, Eun Hee;Park, JoonYong
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.2
    • /
    • pp.107-114
    • /
    • 2019
  • Alert-confirm detection is a highly efficient method to improve phased array radar search performance. It comprises sequential detection in two steps: alert detection, in which a target is detected at a low detection threshold, and confirm detection, which is triggered by alert detection with a longer dwell time to minimize false alarms. This paper provides a design method for applying the alert-confirm detection to multifunctional radars. We find optimum dwell times and false alarm probabilities for each alert detection and confirm detection under the dual constraints of total false alarm probability and maximum allowable dwell time per position. These optimum values are expressed as a function of the mean new target appearance rate. The proposed alert-confirm detection increases the maximum detection range even with a shorter frame time than that of uniform scanning.

Improved face detection method at a distance with skin-color and variable edge-mask filtering (피부색과 가변 경계마스크 필터를 이용한 원거리 얼굴 검출 개선 방법)

  • Lee, Dong-Su;Yeom, Seok-Won;Kim, Shin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.105-112
    • /
    • 2012
  • Face detection at a distance faces is very challenging since images are often degraded by blurring and noise as well as low resolution. This paper proposes an improved face detection method with AdaBoost filtering and sequential testing stages with color and shape information. The conventional AdaBoost filter detects face regions but often generates false alarms. The face detection method is improved by adopting sequential testing stages in order to remove false alarms. The testing stages comprise skin-color test and variable edge-mask filtering. The skin-color filtering is composed of two steps, which involve rectangular window regions and individual pixels to generate binary face clusters. The size of the variable edge-mask is determined by the ellipse which is estimated from the face cluster. The validation of the horizontal and vertical ratio of the mask is also investigated. In the experiments, the efficacy of the proposed algorithm is proved by images captured by a CCTV and a smart-phone

Development of a Freeway Incident Detection Model Based on Traffic Congestion Classification Scheme (교통정체상황 분류기법에 기초한 연속류 돌발상황 검지모형 개발 연구)

  • Kim, Young-Jun;Chang, Myung-Soon
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.175-196
    • /
    • 2004
  • This study focuses on improving the performance of freeway incident detection by introducing some new measures to reduce false alarms in developing a new incident detection model. The model consists of the 5 major components through which a series of decision makings in determining the given traffic flow condition are made. The decision making process was designed such that the causes of traffic congestions can be accurately classified into several types including incidents and bottlenecks according to their unique characteristics. The model performance was tested and found to be compatible with that of the existing well-recognized models in terms of the detection rate and detection time. It should noted that the model produced much less false alarms than most of the existing models. The study results prove that the initial objective of the study was satisfied as it was an experimental trial to improve the false alarm rate for the incident detection model to be more pactically usable for traffic management purposes.