• Title/Summary/Keyword: false alarms

Search Result 199, Processing Time 0.026 seconds

Determination and Predictability of Precipitation-type in Winter from a Ground-based Microwave Radiometric Profiler Radiometer (라디오미터를 이용한 겨울철 강수형태 결정 및 예측가능성 고찰)

  • Won, Hye Young;Kim, Yeon-Hee;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.229-238
    • /
    • 2010
  • The 1,000~500 hPa thickness and the $0^{\circ}C$ isotherm at 850 hPa have been used as the traditional predictors for wintertime precipitation-type forecasts. New approaches are taking on added significance as preexistence method of determination for wintertime precipitation-type exhibits more or less prevalent false alarms. Moreover thicknesses and thermodynamic profiles from ordinary upper-air observation were not adequate to monitor the atmospheric structure. In this regard, Microwave radiometric profiler microwave radiometer is useful in wintertime precipitation-type forecasts because radiometric measurements provide soundings at high temporal resolution. In this study, the determination and the predictability of wintertime precipitation-type were examined by using the calculated thicknesses, temperature of 850 hPa (T850) from a microwave radiometer, and surface observation at National Center for Intensive Observation of severe weather (NCIO) located at Haenam, Korea. The critical values for traditional predictors (thickness of 1000~500 hPa and T850) were evaluated and adjusted to Haenam region because snow rarely occurred with a 1000-500 hPa thickness > 5,300 m and T850 > $-10^{\circ}C$. Three thicknesses (e.g., 1,000~850, 1000~700, and 850~700 hPa thickness), T850, surface air temperature, and wet-bulb temperature were also evaluated as the additional predictors. A simple nomogram and a flow chart were finally designed to determine the wintertime precipitation-type using the microwave radiometer. The skill scores for the predictability of precipitation-type determination are considerably improved and the predictors showed the temporal variations in 12 hours before precipitation. We can monitor the hit and run snowfall in winter successful by realtime watch of the predictors, especially in commutes of big cities.

An Optimal Way to Index Searching of Duality-Based Time-Series Subsequence Matching (이원성 기반 시계열 서브시퀀스 매칭의 인덱스 검색을 위한 최적의 기법)

  • Kim, Sang-Wook;Park, Dae-Hyun;Lee, Heon-Gil
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1003-1010
    • /
    • 2004
  • In this paper, we address efficient processing of subsequence matching in time-series databases. We first point out the performance problems occurring in the index searching of a prior method for subsequence matching. Then, we propose a new method that resolves these problems. Our method starts with viewing the index searching of subsequence matching from a new angle, thereby regarding it as a kind of a spatial-join called a window-join. For speeding up the window-join, our method builds an R*-tree in main memory for f query sequence at starting of sub-sequence matching. Our method also includes a novel algorithm for joining effectively one R*-tree in disk, which is for data sequences, and another R*-tree in main memory, which is for a query sequence. This algorithm accesses each R*-tree page built on data sequences exactly cure without incurring any index-level false alarms. Therefore, in terms of the number of disk accesses, the proposed algorithm proves to be optimal. Also, performance evaluation through extensive experiments shows the superiority of our method quantitatively.

Design and Performance Analysis of Energy-Aware Distributed Detection Systems with Two Passive Sonar Sensors (수동 소나 쌍을 이용한 에너지 인식 분산탐지 체계의 설계 및 성능 분석)

  • Do, Joo-Hwan;Kim, Song-Geun;Hong, Sun-Mog
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.139-147
    • /
    • 2009
  • In this paper, optimum design of energy-aware distributed detection is considered for a parallel sensor network system consisting of a fusion center and two passive sonar nodes. AND rule and OR rule are employed as the fusion rules of the sensor network. For the fusion rules, it is shown that a threshold rule of each sensor node has uniformly most powerful properties. Optimum threshold for each sensor is investigated that maximizes the probability of detection under a constraint on energy consumption due to false alarms. It is also investigated through numerical experiments how signal strength, an energy constraint, and the distance between two sensor nodes affect the system detection performances.

Study on the operating range of stand-alone sensor in consideration of the impacts of combustion products on residents (연소생성물이 거주자에 미치는 영향을 고려한 단독경보형감지기의 작동범위에 대한 연구)

  • Lee, Jong-Hwa;Kim, Si-Kuk;Jee, Seung-Wook;Kim, Pil-Young;Lee, Chun-Ha
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.23-31
    • /
    • 2012
  • Recent research on stand-alone focused on the improvement and development of functions for solving problems such as the limited operating time of stand-alone installed at dwelling and their low reliability caused by false alarms, but it is more urgent to study on the operating range of stand-alone sensor in consideration of the impacts of combustion products on residents because the primary goal of fire safety is minimizing casualties. This study purposed to propose the optimized operating range of stand-alone sensor in consideration of the impacts of combustion products on residents. For this purpose, we made a mathematical approach to the change of temperature over the lapse of time in compartment fires similar to house fires, and established the standards of the body's response against heat and smoke based on literature review. In addition, we surveyed domestic and foreign technological standards for stand-alone sensor, and converted them to standards for residents of the body's response against heat and smoke using mathematical model equations and analyzed them comparatively.

Face Recognition on complex backgrounds using Neural Network (복잡한 배경에서 신경망을 이용한 얼굴인식)

  • Han, Jun-Hee;Nam, Kee-Hwan;Park, Ho-Sik;Lee, Young-Sik;Jung, Yeon-Gil;Ra, Sang-Dong;Bae, Cheol-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1149-1152
    • /
    • 2005
  • Detecting faces in images with complex backgrounds is a difficult task. Our approach, which obtains state of the art results, is based on a generative neural network model: the Constrained Generative Model (CGM). To detect side view faces and to decrease the number of false alarms, a conditional mixture of networks is used. To decrease the computational time cost, a fast search algorithm is proposed. The level of performance reached, in terms of detection accuracy and processing time, allows to apply this detector to a real word application: the indexation of face images on the Web.

  • PDF

A Novel Application-Layer DDoS Attack Detection A1gorithm based on Client Intention (사용자 의도 기반 응용계층 DDoS 공격 탐지 알고리즘)

  • Oh, Jin-Tae;Park, Dong-Gue;Jang, Jong-Soo;Ryou, Jea-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.1
    • /
    • pp.39-52
    • /
    • 2011
  • An application-layer attack can effectively achieve its objective with a small amount of traffic, and detection is difficult because the traffic type is very similar to that of legitimate users. We have discovered a unique characteristic that is produced by a difference in client intention: Both a legitimate user and DDoS attacker establish a session through a 3-way handshake over the TCP/IP layer. After a connection is established, they request at least one HTTP service by a Get request packet. The legitimate HTTP user waits for the server's response. However, an attacker tries to terminate the existing session right after the Get request. These different actions can be interpreted as a difference in client intention. In this paper, we propose a detection algorithm for application layer DDoS attacks based on this difference. The proposed algorithm was simulated using traffic dump files that were taken from normal user networks and Botnet-based attack tools. The test results showed that the algorithm can detect an HTTP-Get flooding attack with almost zero false alarms.

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

Two-Phase Approach for Data Quality Management for Slope Stability Monitoring (경사면의 안정성 모니터링 데이터의 품질관리를 위한 2 단계 접근방안)

  • Junhyuk Choi;Yongjin Kim;Junhwi Cho;Woocheol Jeong;Songhee Suk;Song Choi;Yongseong Kim;Bongjun Ji
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.67-74
    • /
    • 2023
  • In order to monitor the stability of slopes, research on data-based slope failure prediction and early warning is increasing. However, most papers overlook the quality of data. Poor data quality can cause problems such as false alarms. Therefore, this paper proposes a two-step hybrid approach consisting of rules and machine learning models for quality control of data collected from slopes. The rule-based has the advantage of high accuracy and intuitive interpretation, and the machine learning model has the advantage of being able to derive patterns that cannot be explicitly expressed. The hybrid approach was able to take both of these advantages. Through a case study, the performance of using the two methods alone and the case of using the hybrid approach was compared, and the hybrid method was judged to have high performance. Therefore, it is judged that using a hybrid method is more appropriate than using the two methods alone for data quality control.

Assessing Multiple Hazard Recognition Abilities of Construction Equipment Operators in Dark Environments Using Virtual Reality

  • Sangkil Song;Juwon Hong;Jinwoo Choi;Minjin Kong;Jongbaek An;Jaewon Jeoung;Taehoon Hong
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.925-931
    • /
    • 2024
  • Struck-by accidents on construction sites are one of the major accidents that need to be prevented. Poor visual environments (especially, dark environments) and multiple hazards appearing simultaneously can lead to struck-by accidents due to failure of hazard recognition by construction equipment operators. Therefore, this study aimed to assess multiple hazard recognition abilities of construction equipment operators in dark environments. To this end, virtual reality-based experiments were designed and conducted to collect data on three metrics for multiple hazard recognition abilities: (i) initial recognition time (IRT); (ii) average recognition time per hazard (ART); (iii) the number of false alarms (NoFA). The effect of the number of hazards on multiple hazard recognition abilities in dark environments was analyzed using two statistical methods: (i) Friedman test; (ii) Spearman correlation analysis. The number of hazards has a significant effect on multiple hazard recognition abilities. The data groups for IRT and ART, categorized by the number of hazards, had statistically significant differences. In addition, the number of hazards have negative correlations with IRT and ART. Especially, multiple hazard recognition abilities were lowest when the number of hazards was extremely low (i.e., the number of hazards was 1). Based on these results, construction companies will be able to plan worker allocations that prevent struck-by accidents by increasing multiple hazard recognition abilities in dark environments on construction sites.

Extraversion and Recognition for Emotional Words: Effects of Valence, Frequency, and Task-difficulty (외향성과 정서단어의 재인 기억: 정서가, 빈도, 과제 난이도 효과)

  • Kang, Eunjoo
    • Korean Journal of Cognitive Science
    • /
    • v.25 no.4
    • /
    • pp.385-416
    • /
    • 2014
  • In this study, memory for emotional words was compared between extraverts and introverts, employing signal detection analysis to distinguish differences in discriminative memory and response bias. Subjects were presented with a study list of emotional words in an encoding session, followed by a recognition session. Effects of task difficulty were examined by varying the nature of the encoding task and the intervals between study and test. For an easy task, with a retention interval of 5 minutes (Study I), introverts exhibited better memory (i.e., higher d') than extraverts, particularly for low-frequency words, and response biases did not differ between these two groups. For a difficult task, with a one-month retention period (Study II), performance was poor overall, and only high-frequency words were remembered; also extraverts adopted a more liberal criterion for 'old' responses (i.e., more hits and more false alarms) for positive emotional-valence words. These results suggest that as task difficulty drives down performance, effects of internal control processes become more apparent, revealing differences in response biases for positive words between extraverts and introverts. These results show that extraversion can distort memory performance for words, depending on their emotional valence.