• Title/Summary/Keyword: fake news

Search Result 100, Processing Time 0.029 seconds

Fake News Detection for Korean News Using Text Mining and Machine Learning Techniques (텍스트 마이닝과 기계 학습을 이용한 국내 가짜뉴스 예측)

  • Yun, Tae-Uk;Ahn, Hyunchul
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.1
    • /
    • pp.19-32
    • /
    • 2018
  • Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection method using Artificial Intelligence techniques over the past years. But, unfortunately, there have been no prior studies proposed an automated fake news detection method for Korean news. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (Topic Modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as multiple discriminant analysis, case based reasoning, artificial neural networks, and support vector machine can be applied. To validate the effectiveness of the proposed method, we collected 200 Korean news from Seoul National University's FactCheck (http://factcheck.snu.ac.kr). which provides with detailed analysis reports from about 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Detecting Fake News about COVID-19 Infodemic Using Deep Learning and Content Analysis

  • Olga Chernyaeva;Taeho Hong;YongHee Kim;YoungKi Park;Gang Ren;Jisoo Ock
    • Asia pacific journal of information systems
    • /
    • v.32 no.4
    • /
    • pp.945-963
    • /
    • 2022
  • With the widespread use of social media, online social platforms like Twitter have become a place of rapid dissemination of information-both accurate and inaccurate. After the COVID-19 outbreak, the overabundance of fake information and rumours on online social platforms about the COVID-19 pandemic has spread over society as quickly as the virus itself. As a result, fake news poses a significant threat to effective virus response by negatively affecting people's willingness to follow the proper public health guidelines and protocols, which makes it important to identify fake information from online platforms for the public interest. In this research, we introduce an approach to detect fake news using deep learning techniques, which outperform traditional machine learning techniques with a 93.1% accuracy. We then investigate the content differences between real and fake news by applying topic modeling and linguistic analysis. Our results show that topics on Politics and Government services are most common in fake news. In addition, we found that fake news has lower analytic and authenticity scores than real news. With the findings, we discuss important academic and practical implications of the study.

Fake News Detection on YouTube Using Related Video Information (관련 동영상 정보를 활용한 YouTube 가짜뉴스 탐지 기법)

  • Junho Kim;Yongjun Shin;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.19-36
    • /
    • 2023
  • As advances in information and communication technology have made it easier for anyone to produce and disseminate information, a new problem has emerged: fake news, which is false information intentionally shared to mislead people. Initially spread mainly through text, fake news has gradually evolved and is now distributed in multimedia formats. Since its founding in 2005, YouTube has become the world's leading video platform and is used by most people worldwide. However, it has also become a primary source of fake news, causing social problems. Various researchers have been working on detecting fake news on YouTube. There are content-based and background information-based approaches to fake news detection. Still, content-based approaches are dominant when looking at conventional fake news research and YouTube fake news detection research. This study proposes a fake news detection method based on background information rather than content-based fake news detection. In detail, we suggest detecting fake news by utilizing related video information from YouTube. Specifically, the method detects fake news through CNN, a deep learning network, from the vectorized information obtained from related videos and the original video using Doc2vec, an embedding technique. The empirical analysis shows that the proposed method has better prediction performance than the existing content-based approach to detecting fake news on YouTube. The proposed method in this study contributes to making our society safer and more reliable by preventing the spread of fake news on YouTube, which is highly contagious.

An Ensemble Approach to Detect Fake News Spreaders on Twitter

  • Sarwar, Muhammad Nabeel;UlAmin, Riaz;Jabeen, Sidra
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.294-302
    • /
    • 2022
  • Detection of fake news is a complex and a challenging task. Generation of fake news is very hard to stop, only steps to control its circulation may help in minimizing its impacts. Humans tend to believe in misleading false information. Researcher started with social media sites to categorize in terms of real or fake news. False information misleads any individual or an organization that may cause of big failure and any financial loss. Automatic system for detection of false information circulating on social media is an emerging area of research. It is gaining attention of both industry and academia since US presidential elections 2016. Fake news has negative and severe effects on individuals and organizations elongating its hostile effects on the society. Prediction of fake news in timely manner is important. This research focuses on detection of fake news spreaders. In this context, overall, 6 models are developed during this research, trained and tested with dataset of PAN 2020. Four approaches N-gram based; user statistics-based models are trained with different values of hyper parameters. Extensive grid search with cross validation is applied in each machine learning model. In N-gram based models, out of numerous machine learning models this research focused on better results yielding algorithms, assessed by deep reading of state-of-the-art related work in the field. For better accuracy, author aimed at developing models using Random Forest, Logistic Regression, SVM, and XGBoost. All four machine learning algorithms were trained with cross validated grid search hyper parameters. Advantages of this research over previous work is user statistics-based model and then ensemble learning model. Which were designed in a way to help classifying Twitter users as fake news spreader or not with highest reliability. User statistical model used 17 features, on the basis of which it categorized a Twitter user as malicious. New dataset based on predictions of machine learning models was constructed. And then Three techniques of simple mean, logistic regression and random forest in combination with ensemble model is applied. Logistic regression combined in ensemble model gave best training and testing results, achieving an accuracy of 72%.

Does Fake News Matter to Election Outcomes? The Case Study of Taiwan's 2018 Local Elections

  • Wang, Tai-Li
    • Asian Journal for Public Opinion Research
    • /
    • v.8 no.2
    • /
    • pp.67-104
    • /
    • 2020
  • Fake news and disinformation provoked heated arguments during Taiwan's 2018 local election. Most significantly, concerns grew that Beijing was attempting to sway the island's politics armed with a new "Russian-style influence campaign" weapon (Horton, 2018). To investigate the speculated effects of the "onslaught of misinformation," an online survey with 1068 randomly selected voters was conducted immediately after the election. Findings confirmed that false news affected Taiwanese voters' judgment of the news and their voting decisions. More than 50% of the voters cast their votes without knowing the correct campaign news. In particular, politically neutral voters, who were the least able to discern fake news, tended to vote for the China-friendly Kuomintang (KMT) candidates. Demographic analysis further revealed that female voters tended to be more likely to believe fake news during the election period compared to male voters. Younger or lower-income voters had the lowest levels of discernment of fake news. Further analyses and the implications of these findings for international societies are deliberated in the conclusion.

Algorithm Design to Judge Fake News based on Bigdata and Artificial Intelligence

  • Kang, Jangmook;Lee, Sangwon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.50-58
    • /
    • 2019
  • The clear and specific objective of this study is to design a false news discriminator algorithm for news articles transmitted on a text-based basis and an architecture that builds it into a system (H/W configuration with Hadoop-based in-memory technology, Deep Learning S/W design for bigdata and SNS linkage). Based on learning data on actual news, the government will submit advanced "fake news" test data as a result and complete theoretical research based on it. The need for research proposed by this study is social cost paid by rumors (including malicious comments) and rumors (written false news) due to the flood of fake news, false reports, rumors and stabbings, among other social challenges. In addition, fake news can distort normal communication channels, undermine human mutual trust, and reduce social capital at the same time. The final purpose of the study is to upgrade the study to a topic that is difficult to distinguish between false and exaggerated, fake and hypocrisy, sincere and false, fraud and error, truth and false.

News Consumption and Behavior of Young Adults and the Issue of Fake News

  • Nazari, Zeinab;Oruji, Mozhgan;Jamali, Hamid R.
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.2
    • /
    • pp.1-16
    • /
    • 2022
  • This study aimed to understand young adults' attitudes concerning news and news resources they consumed, and how they encounter the fake news phenomenon. A qualitative approach was used with semi-structured interviews with 41 young adults (aged 20-30) in Tehran, Iran. Findings revealed that about half of the participants favored social media, and a smaller group used traditional media and only a few maintained that traditional and modern media should be used together. News quality was considered to be lower on social media than in traditional news sources. Furthermore, young adults usually followed the news related to the issues which had impact on their daily life, and they typically tended to share news. To detect fake news, they checked several media to compare the information; and profiteering and attracting audiences' attention were the most important reasons for the existence of fake news. This is the first qualitative study for understanding news consumption behavior of young adults in a politicized society.

Fake News Detection Using CNN-based Sentiment Change Patterns (CNN 기반 감성 변화 패턴을 이용한 가짜뉴스 탐지)

  • Tae Won Lee;Ji Su Park;Jin Gon Shon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.179-188
    • /
    • 2023
  • Recently, fake news disguises the form of news content and appears whenever important events occur, causing social confusion. Accordingly, artificial intelligence technology is used as a research to detect fake news. Fake news detection approaches such as automatically recognizing and blocking fake news through natural language processing or detecting social media influencer accounts that spread false information by combining with network causal inference could be implemented through deep learning. However, fake news detection is classified as a difficult problem to solve among many natural language processing fields. Due to the variety of forms and expressions of fake news, the difficulty of feature extraction is high, and there are various limitations, such as that one feature may have different meanings depending on the category to which the news belongs. In this paper, emotional change patterns are presented as an additional identification criterion for detecting fake news. We propose a model with improved performance by applying a convolutional neural network to a fake news data set to perform analysis based on content characteristics and additionally analyze emotional change patterns. Sentimental polarity is calculated for the sentences constituting the news and the result value dependent on the sentence order can be obtained by applying long-term and short-term memory. This is defined as a pattern of emotional change and combined with the content characteristics of news to be used as an independent variable in the proposed model for fake news detection. We train the proposed model and comparison model by deep learning and conduct an experiment using a fake news data set to confirm that emotion change patterns can improve fake news detection performance.

Fake News in Social Media: Bad Algorithms or Biased Users?

  • Zimmer, Franziska;Scheibe, Katrin;Stock, Mechtild;Stock, Wolfgang G.
    • Journal of Information Science Theory and Practice
    • /
    • v.7 no.2
    • /
    • pp.40-53
    • /
    • 2019
  • Although fake news has been present in human history at any time, nowadays, with social media, deceptive information has a stronger effect on society than before. This article answers two research questions, namely (1) Is the dissemination of fake news supported by machines through the automatic construction of filter bubbles, and (2) Are echo chambers of fake news manmade, and if yes, what are the information behavior patterns of those individuals reacting to fake news? We discuss the role of filter bubbles by analyzing social media's ranking and results' presentation algorithms. To understand the roles of individuals in the process of making and cultivating echo chambers, we empirically study the effects of fake news on the information behavior of the audience, while working with a case study, applying quantitative and qualitative content analysis of online comments and replies (on a blog and on Reddit). Indeed, we found hints on filter bubbles; however, they are fed by the users' information behavior and only amplify users' behavioral patterns. Reading fake news and eventually drafting a comment or a reply may be the result of users' selective exposure to information leading to a confirmation bias; i.e. users prefer news (including fake news) fitting their pre-existing opinions. However, it is not possible to explain all information behavior patterns following fake news with the theory of selective exposure, but with a variety of further individual cognitive structures, such as non-argumentative or off-topic behavior, denial, moral outrage, meta-comments, insults, satire, and creation of a new rumor.

A study on the detection of fake news - The Comparison of detection performance according to the use of social engagement networks (그래프 임베딩을 활용한 코로나19 가짜뉴스 탐지 연구 - 사회적 참여 네트워크의 이용 여부에 따른 탐지 성능 비교)

  • Jeong, Iitae;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.197-216
    • /
    • 2022
  • With the development of Internet and mobile technology and the spread of social media, a large amount of information is being generated and distributed online. Some of them are useful information for the public, but others are misleading information. The misleading information, so-called 'fake news', has been causing great harm to our society in recent years. Since the global spread of COVID-19 in 2020, much of fake news has been distributed online. Unlike other fake news, fake news related to COVID-19 can threaten people's health and even their lives. Therefore, intelligent technology that automatically detects and prevents fake news related to COVID-19 is a meaningful research topic to improve social health. Fake news related to COVID-19 has spread rapidly through social media, however, there have been few studies in Korea that proposed intelligent fake news detection using the information about how the fake news spreads through social media. Under this background, we propose a novel model that uses Graph2vec, one of the graph embedding methods, to effectively detect fake news related to COVID-19. The mainstream approaches of fake news detection have focused on news content, i.e., characteristics of the text, but the proposed model in this study can exploit information transmission relationships in social engagement networks when detecting fake news related to COVID-19. Experiments using a real-world data set have shown that our proposed model outperforms traditional models from the perspectives of prediction accuracy.