• Title/Summary/Keyword: failure zone

Search Result 577, Processing Time 0.032 seconds

Flexural Behavior of RC Beam Repaired with Polymer Mortar (폴리머 모르타르로 보수된 철근콘크리트 보의 휨 거동)

  • Cho, Yong-In;Han, Sang-Hoon;Park, Jea-Kyu;Yeon, Yeong-Mo;Hong, Ki-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.91-99
    • /
    • 2017
  • The purpose of this paper is to evaluate the flexural performance of reinforced concrete (RC) beams repaired with polymer mortar. The repaired and non-repaired 13th beams which was fabricated by considering repair position, repair depth, and curing age of polymer mortar as test variables were tested under three point loading. All specimens repaired in compressive and tensile zone did not fail due to interfacial failure between polymer mortar and concrete but failed when the strain of repaired mortar exceeded the ultimate tensile strain of polymer mortar. Maximum load of specimens repaired in compressive zone was similar to that of non-repaired specimen, reference specimen. Additionally, their ductility index was higher than that of reference specimen. On the other hand, specimens repaired in tensile zone failed very brittlely and have a lower ductility index than reference specimen. Nonlinear analysis by using OpenSees was performed to predict the behavior of RC beam repaired with polymer mortar. Two dimension frame element was used to simplify an analysis model and fiber model was applied to consider the material non-linearity. It was confirmed from the analysis results that nonlinear analysis properly predicts the behavior of specimens repaired in compressive zone and overestimates the behavior of specimens repaired in tensile zone.

Cable Functional Failure Temperature Evaluation of Cable Exposed to the Fire of Nuclear Power Plant (원자력발전소 케이블 노출 화재 시 기능상실온도 분석)

  • Lim, Hyuk-Soon;Bae, Yeon-Kyoung;Chi, Moon-Goo
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • The fire event occurred in fire proof zone often causes serious electrical problems such as shorts, ground faults, or open circuits in nuclear power plants. These would be directed to the loss of safe shutdown capabilities performed by safety related systems and equipments. The fire event can treat the basic design principle that safety systems should keep their functions with redundancy and independency. In case of a cable fire, operators can not perform their mission properly and can misjudge the situation because of spurious operation, wrong indication or instrument. These would deteriorate the plant capabilities of safety shutdown and make disastrous conditions. In this paper, investigation and cause analysis of cable fire in Nuclear Power Plant, we described the cable fire temperature and functional failure criteria and the cable functional failure temperature evaluation by exposed fire is studied.

Differences on specified and actual concrete strength for buildings on seismic zones

  • De-Leon-Escobedo, David;Delgado-Hernandez, David Joaquin;Arteaga-Arcos, Juan Carlos;Flores-Gomora, Jhonnatan
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.349-357
    • /
    • 2017
  • The design of reinforced concrete structures strongly depends on the value of the compression concrete strength used for the structural components. Given the uncertainties involved on the materials quality provided by concrete manufacturers, in the construction stage, these components may be either over or under-reinforced respect to the nominal condition. If the structure is under reinforced, and the deficit on safety level is not as large to require the structure demolition, someone should assume the consequences, and pay for the under standard condition by means of a penalty. If the structure is over reinforced, and other failure modes are not induced, the builder may receive a bonus, as a consequence of the higher, although unrequested, building resistance. The change on the building safety level is even more critical when the structure is under a seismic environment. In this research, a reliability-based criteria, including the consideration of expected losses, is proposed for bonification/penalization, when there are moderated differences between the supplied and specified reinforced concrete strength for the buildings. The formulation is applied to two hypothetical, with regular structural type, 3 and 10 levels reinforced concrete buildings, located on the soft soil zone of Mexico City. They were designed under the current Mexican code regulations, and their responses for typical spectral pseudoaccelerations, combined with their respective occurrence probabilities, are used to calculate the building failure probability. The results are aimed at providing objective basis to start a negotiation towards a satisfactory agreement between the involved parts. The main contribution resides on the explicit consideration of potential losses, including the building and contents losses and the business interruption due to the reconstruction period.

Effect on the Stabilizing Heat Treatment to Weld Joint for the USC Coal Boiler Tubes(SA213 TP347H) (초초임계 석탄발전 보일러 튜브(SA213 TP347H) 용접부 안정화 열처리 효과)

  • Ahn, Jong-Seok;Park, Jin-Keun;Lee, Gil-Jae;Yoon, Jae-Yeon
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.30-36
    • /
    • 2015
  • Austenite stainless steel(SA213-TP347H) has widely been used for the superheater & reheater tube in USC(ultra-supercritica) coal boiler because of its high creep rupture strength and anti-oxidation. But recently, the short-term failures have happened frequently in heat affected zone for only 4,000~15,000hours of service. Many investigations have been conducted to understand the failure mechanism. The root cause of failure was comfirmed to "strain induce participation hardening crack" or "reheat cracking". This mechanism often occurred due to weld residual stress and precipitation of the Cr, Nb carbides in the stabilized stainless steel such as TP347H. This paper presents an analysis of failure tube and effect of the sample tubes that conducting stabilizing heat treatment in site after 11,380hours & 16,961hours of service. Visual inspection was performed. In addition, microscopic characteristics was identified by O.M, SEM, and hardness test was carried out to find out the heat treatment effects. Failures seem to happen because of being not conducted stabilizing heat treatment in site. And another cause is inadequate weld parameter such as pass, ampere, voltage, inter-pass temperature. Thus, this paper has the purpose to describe that how to prevent similar failures in those weld-joints.

Artificial Intelligence Estimation of Network Flows for Seismic Risk Analysis (지진 위험도 분석에서 인공지능모형을 이용한 네트워크 교통량의 예측)

  • Kim, Geun-Young
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.3
    • /
    • pp.117-130
    • /
    • 1999
  • Earthquakes damage roadway bridges and structures, resulting in significant impacts on transportation system Performance and regional economy. Seismic risk analysis (SRA) procedures establish retrofit priorities for vulnerable highway bridges. SRA procedures use average daily traffic volumes to determine the relative importance of a bridge. This research develops a cost-effective transportation network analysis (TAN) procedure for evaluating numerous traffic flow analyses in terms of the additional system cost due to failure. An important feature of the TNA Procedure is the use of an associative memory (AM) approach in the artificial intelligence held. A simple seven-zone network is developed and used to evaluate the TNA procedure. A subset of link failure system states is randomly selected to simulate synthetic post-earthquake network flows. The performance of different AM model is evaluated. Results from numerous link-failure scenarios demonstrate the applicability of the AM models to traffic flow estimation.

  • PDF

Analysis of Slope Behavior Using FBG Sensor and Inclinometer (광섬유 센서와 지중경사계를 이용한 사면의 거동 분석)

  • 장기태;한희수;유병선
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.397-406
    • /
    • 2003
  • Several sensor systems are used to estimate the reinforcing effect of stabilizing pile in slopes, and to find a failure surface in slopes effectively. FBG(Fiber Brags Crating) sensor, V/W(Vibrating Wire) sensor and inclinometer have shown a great potentiality to serve real time health monitoring of the reinforcing structures. Field tests and test results have shown great solutions for sensor systems of Smart Structures. The purpose of this research is to seek for the relationships among the slope movement and the reinforcing effect of stabilizing pile, and the strain distribution of stabilizing pile in a active zone by analyzing the data from the in-situ measurement so that the possible failure surface should be well defined based on the relationships. The field test results have shown that the data by FBG sensor are well coincided with those of V/W sensor and inclinometer, and the reinforcing effect of the stabilizing pile is good enough.

A Study on Automatic Classification of Characterized Ground Regions on Slopes by a Deep Learning based Image Segmentation (딥러닝 영상처리를 통한 비탈면의 지반 특성화 영역 자동 분류에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung;Kim, Seung Hyeon;Ha, Dae Mok;Choi, Isu
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.508-522
    • /
    • 2019
  • Because of the slope failure, not only property damage but also human damage can occur, slope stability analysis should be conducted to predict and reinforce of the slope. This paper, defines the ground areas that can be characterized in terms of slope failure such as Rockmass jointset, Rockmass fault, Soil, Leakage water and Crush zone in sloped images. As a result, it was shown that the deep learning instance segmentation network can be used to recognize and automatically segment the precise shape of the ground region with different characteristics shown in the image. It showed the possibility of supporting the slope mapping work and automatically calculating the ground characteristics information of slopes necessary for decision making such as slope reinforcement.

A Study on the Evaluation of Stability due to Ground Deterioration of Slope (사면의 지반 열화로 인한 안정성 평가에 관한 연구)

  • Han, Young-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.83-92
    • /
    • 2018
  • The lapse of time may cause in the slope structure various deterioration phenomenon progresses in the ground of slope, and collapse due to deterioration of strength, resulting in a decrease in the service life. The approach to slope stability due to the ground deterioration is a different concept from the existing limit equilibrium analysis, which is limited to the physical characteristics and geometrical structure of ground. In this study, we conducted a comparative analysis of various literature studies related to the slope failure characteristics and behaviors to presented the optimal formulas for shear strength reduction, such as the exponential function, the logarithmic function and the inverse hyperbolic function. And then a case study was performed on cut slope of Gyeongbu High Speed Rail construction site along the Yangsan fault zone, where the slope failure of shale layer vulnerable to deterioration occurred. As a result, it was confirmed that landslide occurred due to reduction of shear strength by deterioration, as safety factor is approx. 1.0 at the time when the slope failure occurred. Based on the comprehensive case study, as a quantitative approach to the evaluation of slope stability due to deterioration of ground, finally we propose a method for evaluating slope stability with optimal strength reduction curves.

Shear Capacity of Corrugated rib Shear Connector (파형전단연결재의 전단저항 성능)

  • Ahn, Jin-Hee;Choi, Kyu-Tae;Kim, Sung-Hyun;Kim, Sang-Hyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.375-381
    • /
    • 2008
  • This paper deals with the shear capacity of corrugated rib as the shear connector in composite structures. Corrugated rib is modified as perfobond rib shear connector type to evaluate the shear capacity. A total 12 push-out specimens with stud, perfobond rib, and corrugated rib connector were fabricated. Then, the influences of hole-crossing bars, concrete dowel, depth of corrugated panel and height of rib on the shear capacity were evaluated experimentally. As the results of these tests, the failure mechanisms of corrugated rib and perfobond rib specimens were associated with the bearing failure of the concrete slabs, but the failure of weld zone did not occur. The shear capacity of corrugated rib specimens improved as high to 96% compared to the perfobond rib shear connectors. Also, the hole-crossing bars were effective on the improvement of concrete dowel action, and consequently, shear capacity increased by 48%. It was also proven that the increment of the depth of corrugated panel and the height of rib increased the concrete bearing resistance, therefore increasing the shear capacity.

Influence of loading rate on flexural performance and acoustic emission characteristics of Ultra High Performance Concrete

  • Prabhat Ranjan Prem;Vignesh Kumar Ramamurthy;Vaibhav Vinod Ingle;Darssni Ravichandran;Greeshma Giridhar
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.617-626
    • /
    • 2024
  • The study investigated the behavior of plain and fibered Ultra-High Performance Concrete (UHPC) beams under varying loading conditions using integrated analysis of the flexure and acoustic emission tests. The loading rate of testing is -0.25 -2 mm/min. It is observed that on increasing loading rate, flexural strength increases, and toughness decreases. The acoustic emission testing revealed that higher loading rates accelerate crack propagation. Fiber effect and matrix cracking are identified as significant contributors to the release of acoustic emission energy, with fiber rupture/failure and matrix cracking showing rate-dependent behavior. Crack classification analysis indicated that the rise angle (RA) value decreased under quasi-static loading. The average frequency (AF) value increased with the loading rate, but this trend reversed under rate-dependent conditions. K-means analysis identified distinct clusters of crack types with unique frequency and duration characteristics at different loading rates. Furthermore, the historic index and signal strength decreased with increasing loading rate after peak capacity, while the severity index increased in the post-peak zone, indicating more severe damage. The sudden rise in the historic index and cumulative signal strength indicates the possibility of several occurrences, such as the emergence of a significant crack, shifts in cracking modes, abrupt failure, or notable fiber debonding/pull-out. Moreover, there is a distinct rise in the number of AE knees corresponding to the increase in loading rate. The crack mapping from acoustic emission testing aligned with observed failure patterns, validating its use in structural health monitoring.