• Title/Summary/Keyword: failure zone

Search Result 577, Processing Time 0.022 seconds

Experimental Analysis of Anchorage Zone Design for Unbonded Post-Tensioned Concrete Beam With 2400MPa Single Tendons (2400MPa 단일 강연선이 적용된 포스트텐션 정착 구역 설계에 대한 실험적 연구)

  • Moon, Sang Pil;Ro, Kyong Min;Kim, Min Sook;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • In this study, the design of anchorage zone for unbonded post-tensioned concrete beam with single tendons of ultimate strength 2400MPa was evaluated to verify that the KDS 14 20 60(2016) and KHBDC 2010 codes are applicable. The experimental results showed that the bursting force equation of current design codes underestimated bursting stress measured by test, because the KDS 14 20 60(2016) and KHBDC 2010 propose the location of the maximum bursting force 0.5h which is the half of the height of member regardless of stress contribution. Although the allowable bearing force calculated by current design codes was not satisfied the prestressing force, the cracks and failure in anchorage zone was not observed due to the strengthening effect of anchorage zone reinforcement.

The Problem and Improvement Plan of Ultrasonic Exploration of Weld Zone in Railway Rails (철도 레일 용접부 초음파 탐상의 문제점 및 개선방안)

  • Jang, Suk-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.123-133
    • /
    • 2004
  • The evaluation standard method of weld zone in rails is not exhibited in case of the domestic and the outside about ultrasonic inspection method. therefore, practical affairs a mans on the ground know very little about evaluation method of pass and failure. This paper discuss about ultrasonic exploration of weld zone in railway rails to know practical affairs a mans that the first, "problem and improvement direction of domestic track construction specifications applied according to a place ordering" and the second, "the method applied of ultrasonic exploration test of weld zone in railway rails".

Estimation of Slope Behavior by Soil Temperature (지중온도에 의한 사면의 거동 예측)

  • 장기태;한희수;유병선
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.407-418
    • /
    • 2003
  • It is necessary, in the light of the importance of long-term slope stability problem, to develop a simple method or tool which can figure out the possible failure surface resulting from weathering effect and other factors. The FBG(Fiber Bragg Crating) sensor system is used to estimate the correlations between the soil temperature and the slope behavior, and to find a failure surface in slopes effectively. This research is to seek for the correlation between the soil temperature distribution and the strain distribution of the reinforcing materials in an active zone by analyzing the data from the in-situ measurement so that the possible failure surface should be well defined based on the correlation. The zone of high temperature fluctuation can be regarded as one of the possible failure surface due to the weathering effect while the constant temperature depth of the ground, if exists, would not be relatively affected by the weathering process.

Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods

  • Ghannadpour, S.A.M.;Shakeri, M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.785-802
    • /
    • 2018
  • In this paper, two different computational methods, called Rayleigh-Ritz and collocation are developed to estimate the ultimate strength of composite plates. Progressive damage behavior of moderately thick composite laminated plates is studied under in-plane compressive load and uniform lateral pressure. The formulations of both methods are based on the concept of the principle of minimum potential energy. First order shear deformation theory and the assumption of large deflections are used to develop the equilibrium equations of laminated plates. Therefore, Newton-Raphson technique will be used to solve the obtained system of nonlinear algebraic equations. In Rayleigh-Ritz method, two degradation models called complete and region degradation models are used to estimate the degradation zone around the failure location. In the second method, a new energy based collocation technique is introduced in which the domain of the plate is discretized into the Legendre-Gauss-Lobatto points. In this new method, in addition to the two previous models, the new model named node degradation model will also be used in which the material properties of the area just around the failed node are reduced. To predict the failure location, Hashin failure criteria have been used and the corresponding material properties of the failed zone are reduced instantaneously. Approximation of the displacement fields is performed by suitable harmonic functions in the Rayleigh-Ritz method and by Legendre basis functions (LBFs) in the second method. Finally, the results will be calculated and discussions will be conducted on the methods.

A Reliability Analysis of Slope Stability of Earth-Rockfill Dam (Earth-Rockfill Dam사면파괴에 대한 신뢰도 연구(I))

  • 박현종;이인모
    • Geotechnical Engineering
    • /
    • v.7 no.3
    • /
    • pp.21-32
    • /
    • 1991
  • The purpose of this paper is to develop a reliability model for slope stability of Earth-rockfill dams which accounts for all uncertainties encountered. The uncertain factors of the design variables include the cohesion, the angle of internal friction, and the porewater Pressure in each zone. More specifically, the model errors in estimating those variables are studied in depth. To reduce the uncertainties due to model errors, updated design variables are obtained using Bayesian Theory. For stability analysis, both the two-dimesional stability analysis and the three-dimensional stability analysis where the end effects and the system reliability concept are considered are used for the reliability calculations. The deterministic safety factor by the three-dimensional analysis is lager than that by the two-dimensional anlysis. However, the probability of failure by the three-dimensional analysis is about 3.5 times larger that by the two-dimensional analysis. It is because the system reliability concept is used in the three-dimensional analysis. The sensitivity analysis shows that the probability of failure is more sensitive to the uncertainty of the cohesion than that of the angle of internal friction.

  • PDF

The Effects of Elbow Joint Angle on the Mechanical Properties of the Common Extensor Tendon of the Humeral Epicondyle

  • Han, Jung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.582-591
    • /
    • 2004
  • The purpose of this study was to determine the effects of elbow joint angle on mechanical properties, as represented by ultimate load, failure strain and elastic modulus, of bone-tendon specimens of common extensor tendon of the humeral epicondyle. Eight pairs of specimens were equally divided into two groups of 8 each, which selected arbitrarily from left or right side of each pair, positioned at 45$^{\circ}$ and 90$^{\circ}$ of elbow flexion and subjected to tension to failure in the physiological direction of the common extensor tendon. For comparison of the differences in the failure and elastic modulus between tendon and the bone-junction, data for both were evaluated individually. Significant reduction in ultimate load of bone-tendon specimens was shown to occur at 45$^{\circ}$. The values obtained from the bone-tendon junctions with regard to the failure strain were significant higher than those from tendon in both loading directions, but the largest failure strain at the bone-tendon junction was found at 45$^{\circ}$. The elastic modulus was found to decrease significantly at the bone-tendon junction when the loading direction switched from 90$^{\circ}$ to 45$^{\circ}$. Histological observation, after mechanical tensile tests, in both loading directions showed that failure occurred at the interface between tendon and uncalcified fibrocartilage in the thinnest fibrocartilage zone of the bone-tendon junction. We concluded that differences in measured mechanical properties are a consequence of varying the loading direction of the tendon across the bone-tendon specimen.

Analysis of post-failure response of sands using a critical state micropolar plasticity model

  • Manzari, Majid T.;Yonten, Karma
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.187-206
    • /
    • 2011
  • Accurate estimations of pre-failure deformations and post-failure responses of geostructures require that the simulation tool possesses at least three main ingredients: 1) a constitutive model that is able to describe the macroscopic stress-strain-strength behavior of soils subjected to complex stress/strain paths over a wide range of confining pressures and densities, 2) an embedded length scale that accounts for the intricate physical phenomena that occur at the grain size scale in the soil, and 3) a computational platform that allows the analysis to be carried out beyond the development of an initially "contained" failure zone in the soil. In this paper, a two-scale micropolar plasticity model will be used to incorporate all these ingredients. The model is implemented in a finite element platform that is based on the mechanics of micropolar continua. Appropriate finite elements are developed to couple displacement, micro-rotations, and pore-water pressure in form of $u_n-{\phi}_m$ and $u_n-p_m-{\phi}_m$ (n > m) elements for analysis of dry and saturated soils. Performance of the model is assessed in a biaxial compression test on a slightly heterogeneous specimen of sand. The role of micropolar component of the model on capturing the post-failure response of the soil is demonstrated.

Cause of Rall Road Slope Failure and Determination of Soil Strength for Remedy (철도사면파괴 원인 및 대책공법 적용을 위한 강도정수 결정)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.3 s.14
    • /
    • pp.25-31
    • /
    • 2004
  • Rail road slope can be fatted because of existence of unexpected soft subsoil. Purpose of this study is verifying the cause of rail road slope failure and determination of soil strength for remedy. Drilling some boreholes, cone penetration test and field vane test were executed in order to find out the cause of slope failure. In addition, laboratory test was conducted in order to determine soil strength of soft soil sampled as undisturbed state. As a result of both the in-situ and the laboratory tests, the cause of slope failure is thought to be propagation of failure zone by progressive rupture of overconsolidated clay Soft soil strength was determined through back analysis of the failed slope.

Probabilistic analysis of anisotropic rock slope with reinforcement measures

  • Zoran Berisavljevic;Dusan Berisavljevic;Milos Marjanovic;Svetlana Melentijevic
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-301
    • /
    • 2023
  • During the construction of E75 highway through Grdelica gorge in Serbia, a major failure occurred in the zone of reinforced rock slope. Excavation was performed in highly anisotropic Paleozoic schist rock formation. The reinforcement consisted of the two rows of micropile wall with pre-stressed anchors. Forces in anchors were monitored with load cells while benchmarks were installed for superficial displacement measurements. The aim of the study is to investigate possible causes of instability considering different probability distributions of the strength of discontinuities and anchor bond strength by applying different optimization techniques for finding the critical failure surface. Even though the deterministic safety factor value is close to unity, the probability of failure is governed by variability of shear strength of anisotropic planes and optimization method used for locating the critical sliding surface. The Cuckoo search technique produces higher failure probabilities compared to the others. Depending on the assigned statistical distribution of input parameters, various performance functions of the factor of safety are obtained. The probability of failure is insensitive to the variation of bond strength. Different sampling techniques should yield similar results considering that the sufficient number of safety factor evaluations is chosen to achieve converged solution.

A Study on Design Techniques and Effectiveness in Energy Saving of Occupied Zone in UFAD System (바닥급기 시스템의 거주역 공조를 위한 설계 기법 및 에너지 절감 효과에 관한 연구)

  • Yu, Ki-Hyung;Song, Kyoo-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.127-133
    • /
    • 2007
  • Underfloor air distribution system is generally known to be more energy-saving and provide more comfort as compared with overhead air distribution system. In practice, however, some buildings to which underfloor air distribution system is applied have less effectiveness in saving energy and are getting dissatisfaction with cold draft caused by wind velocity of air distribution in terms of comfort. It is judged that such problems are due to failure to consider properties of underfloor air distribution system in applying it and identical design with the design standards for the existing overhead air distribution system. This study aims at introducing an air conditioning type of the occupied zone for underfloor all distribution system to see its effectiveness in saving energy for air conditioning of the occupied zone through a comparative simulation with the existing air conditioning type.