• Title/Summary/Keyword: failure testing

Search Result 1,208, Processing Time 0.027 seconds

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.

Effects of ultrasonic instrumentation with different scaler-tip angulations on the shear bond strength and bond failure mode of metallic orthodontic brackets

  • Bonetti, Giulio Alessandri;Parenti, Serena Incerti;Ippolito, Daniela Rita;Gatto, Maria Rosaria;Checchi, Luigi
    • The korean journal of orthodontics
    • /
    • v.44 no.1
    • /
    • pp.44-49
    • /
    • 2014
  • Objective: To evaluate the effects of ultrasonic instrumentation with different scaler-tip angulations on the shear bond strength (SBS) and bond failure mode of metallic orthodontic brackets. Methods: Adhesive pre-coated metallic brackets were bonded to 72 extracted human premolars embedded in autopolymerizing acrylic resin. The teeth were randomly divided into 3 groups (n = 24 each) to undergo no treatment (control group) or ultrasonic instrumentation with a scaler-tip angulation of $45^{\circ}$ ($45^{\circ}$-angulation group) or $0^{\circ}$ ($0^{\circ}$-angulation group). SBS was tested in a universal testing machine, and adhesive remnant index (ARI) scores were recorded. The Kruskal-Wallis test and Mann-Whitney U-test were used for statistical analysis. Results: The control group had a significantly higher mean SBS value than the treated groups, which showed no significant differences in their mean SBS values. The ARI scores were not significantly different among the groups. Conclusions: Ultrasonic instrumentation around the bracket base reduces the SBS of metallic orthodontic brackets, emphasizing the need for caution during professional oral hygiene procedures in orthodontic patients. The scaler-tip angulation does not influence the SBS reduction and bond failure mode of such brackets.

Storage Lifetime Improvement of Zr-Ni K1 Delay System (Zr-Ni계 지연관 결합체(K1) 저장수명 향상)

  • Chang, Il-Ho;Back, Seung-Jun;Jung, Eun-Jin;Son, Young-Kap
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.336-341
    • /
    • 2010
  • The burning interruption between the initiator and the delay column in a Zr-Ni K1 delay system used for a K510 fuze occurs with long-time storage. About 10 % failure probability of 15-years stored delay systems shows the failure mode in open literature. This paper shows storage lifetime improvement results for the delay system through changing the single-base delay column into double-base ones and controlling the manufacturing processes especially the initial inclusion of humidity. The double-base delay columns was implemented by inserting one delay column of fast burning rates between the initiator and the previous delay column of slow burning rates. Accelerated aging tests of the delay systems with double-base columns, and then the firing tests were performed to evaluate the improved lifetime. The double-base delay columns shows improved storage lifetime of the delay system through preventing the failure mode.

Cementing failure of the casing-cement-rock interfaces during hydraulic fracturing

  • Zhu, Hai Y.;Deng, Jin G.;Zhao, Jun;Zhao, Hu;Liu, Hai L.;Wang, Teng
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.91-107
    • /
    • 2014
  • Using the principle of damage mechanics, zero-thickness pore pressure cohesive elements (PPCE) are used to simulate the casing-cement interface (CCI) and cement-rock interface (CRI). The traction-separation law describes the emergence and propagation of the PPCE. Mohr-coulomb criteria determines the elastic and plastic condition of cement sheath and rock. The finite element model (FEM) of delamination fractures emergence and propagation along the casing-cement-rock (CCR) interfaces during hydraulic fracturing is established, and the emergence and propagation of fractures along the wellbore axial and circumferential direction are simulated. Regadless of the perforation angle (the angle between the perforation and the max. horizontal principle stress), mirco-annulus will be produced alonge the wellbore circumferential direction when the cementation strength of the CCI and the CRI is less than the rock tensile strength; the delamination fractures are hard to propagate along the horizontal wellbore axial direction; emergence and propagation of delamination fractures are most likely produced on the shallow formation when the in-situ stresses are lower; the failure mode of cement sheath in the deep well is mainly interfaces seperation and body damange caused by cement expansion and contraction, or pressure testing and well shut-in operations.

Constant amplitude fatigue test of high strength bolts in grid structures with bolt-sphere joints

  • Yang, Xu;Lei, Honggang
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.571-579
    • /
    • 2017
  • The grid structure with bolt-sphere joints is widely adopted by industrial plants with suspending crane. The alternating reciprocating action of the suspending crane will cause fatigue problems of the grid structure with bolt-sphere joints with respect to the rod, the cone, the sealing plate, the bolt ball and the high strength bolt; while the fatigue of the high strength bolt is the key issue of fatigue failure. Based on efficient and smooth loading equipment with the AMSLER fatigue testing machine, this paper conducted a constant amplitude fatigue test on 18 M20 and 14 M30 high strength bolts with 40Cr material, and obtained 19 valid failure points, 9 unspoiled points with more than 2 million cycles, and 4 abnormal failure points. In addition, it established the constant amplitude fatigue design method, ${[{\Delta}{\sigma}]_{{2{\times}10}}{^6=58.91MPa}$, and analyzed the stress concentration and the fatigue fracture of high strength bolts. It can be explained that the geometrical stress concentration of high-strength bolt caused by spiral burr is severe.

Integrity Evaluation of Thinned Elbow Based on TES Plastic Load (TES 소성하중 기준의 감육엘보 기기건전성 평가)

  • Lee, Sung-Ho;Park, Chi-Yong;Lee, Jeong-Keun;Park, Jai-Hak
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.281-286
    • /
    • 2008
  • Wall thinning defect due to flow accelerated corrosion is one of major aging phenomena in most power plant industries, and it results in reducing load carrying capacity of the piping systems. A failure testing system was set up for real scale elbows containing various simulated wall thinning defects, and monotonic in-plane bending tests were performed under internal pressure to find out the failure behavior of thinned elbows. Various finite element models were generated and analysed to figure out and simulate the behavior for other thinning shapes and loading conditions. This paper presents the decreasing trends of load carrying capacity according to the thinning dimensions which were revealed from the investigation of finite element analysis results. A mechanical integrity evaluation model for thinned elbows was proposed, also. This model can be used to calculate the TES plastic load of thinned elbows for general internal pressure, thinning location, and in-plane bending direction.

  • PDF

Development of a Reliability Index using Design, Development and Production Information (설계, 개발 및 양산 정보를 활용한 신뢰성 지수 개발)

  • Kim, Sung Kyu;Park, Jung Won;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.373-382
    • /
    • 2015
  • Purpose: In this paper, we developed a reliability index (RI) to efficiently compare reliability of products based on the design, development and production information such as reliability tests, quality, product life-cycle management. RI also can be applied to reliability prediction of a novel product as well as comparison evaluation among existing products. Methods: For evaluating RI, we proposed evaluation process which is composed of five steps. Target modules are selected based on warranty data and correlation analysis. Scores of selected target modules are calculated by scoring function. Finally, weights of RI model are determined by optimization method. Results: This paper presented an empirical analysis based on failure data of mobile devices. In this case study, we demonstrated that there is a direct correlation between evaluated RI and field failure probability of each product. Conclusion: We proposed the index for comprehensive and effective assessment of product reliability level. From the procedure of this study, we expected to be applied for reliability estimation of novel products and deduction of field failure-related factors.

Behaviour and design of structural steel pins

  • Bridge, R.Q.;Sukkar, T.;Hayward, I.G.;van Ommen, M.
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.97-110
    • /
    • 2001
  • Architectural steel structures with visible tension and compression members are becoming more prevalent as a popular form of construction that reflects the nature of the resistance to the applied loads. These members require the use of structural steel pins at their ends to ensure either axial tension or axial compression in the members. Structural pins have been used as a means of connection for centuries and it would appear that their behaviour is relatively well understood. However, the rules for the design of pins vary quite considerably from code to code and this has caused some confusion amongst consulting structural engineers operating internationally. To provide some insight into this problem, a comprehensive testing program has been carried to examine the influence of parameters such as pin diameter, material properties of the pin, thickness of the loading plates, material properties of the loading plates and the distance of the pin to the edge of the loading plates. The modes of failure have been carefully examined. Based on this study, modifications to current design procedures are proposed that properly take into account the different possible modes of failure.

Evaluation of press formability for Ti-6Al-4V sheet at elevated temperature (티타늄 합금판재(Ti-6Al-4V)의 고온 성형성 평가)

  • Bae, M.K.;Park, J.G.;Kim, J.H.;Park, N.K.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.152-157
    • /
    • 2009
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only aerospace parts but also bio prothesis and motorcycle. But the database is insufficient of the titanium alloy for press forming process. In this study, the effect of temperature on the forming limit diagram was investigated for Ti-6Al-4V titanium alloy sheet through the Hocker's punch stretching test at elevated temperature. Experimental results obtained in this study can provide a database for development of press forming process at elevated temperature of Ti-6Al-4V titanium alloy sheet. From the experimental studies it can be concluded that the formability of Ti-6Al-4V titanium alloy sheet is governed by the ductile failure for the testing temperature below and vice versa neck-induced failure above the recrystalization temperature $0.5T_m$. The formability of Ti-6Al-4V titanium alloy sheet at $750^{\circ}C$ increases about 7 times compared with that at room temperature.

  • PDF

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.