• Title/Summary/Keyword: failure testing

Search Result 1,203, Processing Time 0.025 seconds

Anisotropic Elastic Shear Moduli of Sands Measured by Multi-directional Bender Element Tests in Stress Probe Experiments (사질토의 전단 하중 재하 시 다축 벤더엘리먼트 시험으로 구한 이방적 전단탄성계수)

  • Ko, Young Joo;Jung, Young Hoon;Lee, Choong Hyun;Chung, Choong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.159-166
    • /
    • 2008
  • The stress-strain behavior of soils can usually be regarded as non-linear, while it is also known that the soil exhibits the linear-elastic behavior at pre-failure state (very small strain range, $<10^{-3}%$). This study aims to analyze the variation of anisotropic elastic shear moduli of granular soils in various stress conditions. The stress probe experiments with the triaxial testing device equipped with local strain gages and multi-directional bender elements were conducted. When the stress ratio exceeds the range between -0.5 and 1.5, the elastic shear stiffness in the axial direction deviates from the empirical correlation with current stresses, which indicates that the yielding of soils alters the internal pathway through which the elastic shear wave propagates. The experimental results show that the variation of elastic shear moduli in the horizontal direction closely relates to the volume change of soils.

Bending 30-gauge needles using a needle guide: fatigue life evaluation

  • Jared Joseph Tuttle;Andrew Doran Davidson;Gregory Kent Tuttle
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.23 no.5
    • /
    • pp.281-285
    • /
    • 2023
  • Background: Dentists bend needles prior to certain injections; however, there are concerns regarding needle fracture, lumen occlusion, and sharps handling. A previous study found that a 30-gauge needle fractures after four to nine 90° bends. This fatigue life study evaluated how many 90° bends a 30-gauge dental needle will sustain before fracture when bent using a needle guide. Methods: Two operators at Element Materials Technology, an independent testing, inspection, and certification company tested 48 30-gauge needles. After applying the needle guide, the operators bent the needle to a 90° angle and expressed the anesthetic from the tip. The needle was then bent back to a 0° angle, and the functionality was tested again. This process was repeated until the anesthetic failed to pass through the end of the needle due to fracture or obstruction. Each operator tested 24 needles (12 needles from each lot), and the number of sustained bends before the needle fracture was recorded. Results: The average number of sustained bends before needle failure was 40.33 (95% confidence interval = 37.41-43.26), with a minimum of 20, median of 40, and a maximum of 54. In each trial, the lumen remained patent until the needle fractured. The difference between the operators was statistically significant (P < 0.001). No significant differences in performance between needle lots were observed (P = 0.504). Conclusion: Our results suggest that using a needle guide increases the number of sustained bends before needle fracture (P < 0.000001) than those reported in previous studies. Future studies should further evaluate the use of needle guides with other needle types across a variety of operators. Furthermore, additional opportunities lie in exploring workplace safety considerations and clinical applications of anesthetic delivery using a bent needle.

Creation of regression analysis for estimation of carbon fiber reinforced polymer-steel bond strength

  • Xiaomei Sun;Xiaolei Dong;Weiling Teng;Lili Wang;Ebrahim Hassankhani
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.509-527
    • /
    • 2024
  • Bonding carbon fiber-reinforced polymer (CFRP) laminates have been extensively employed in the restoration of steel constructions. In addition to the mechanical properties of the CFRP, the bond strength (PU) between the CFRP and steel is often important in the eventual strengthened performance. Nonetheless, the bond behavior of the CFRP-steel (CS) interface is exceedingly complicated, with multiple failure causes, giving the PU challenging to forecast, and the CFRP-enhanced steel structure is unsteady. In just this case, appropriate methods were established by hybridized Random Forests (RF) and support vector regression (SVR) approaches on assembled CS single-shear experiment data to foresee the PU of CS, in which a recently established optimization algorithm named Aquila optimizer (AO) was used to tune the RF and SVR hyperparameters. In summary, the practical novelty of the article lies in its development of a reliable and efficient method for predicting bond strength at the CS interface, which has significant implications for structural rehabilitation, design optimization, risk mitigation, cost savings, and decision support in engineering practice. Moreover, the Fourier Amplitude Sensitivity Test was performed to depict each parameter's impact on the target. The order of parameter importance was tc> Lc > EA > tA > Ec > bc > fc > fA from largest to smallest by 0.9345 > 0.8562 > 0.79354 > 0.7289 > 0.6531 > 0.5718 > 0.4307 > 0.3657. In three training, testing, and all data phases, the superiority of AO - RF with respect to AO - SVR and MARS was obvious. In the training stage, the values of R2 and VAF were slightly similar with a tiny superiority of AO - RF compared to AO - SVR with R2 equal to 0.9977 and VAF equal to 99.772, but large differences with results of MARS.

Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections (PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가)

  • Kim, Jae Young;Kim, Yong Nam;Seo, Min Jung;Kim, Beom Jin;Kim, Sung Jig;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.

A novel semi-empirical technique for improving API X70 pipeline steel fracture toughness test data

  • Mohammad Reza Movahedi;Sayyed Hojjat Hashemi
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.351-361
    • /
    • 2024
  • Accurate measurement of KIC values for gas pipeline steels is important for assessing pipe safety using failure assessment diagrams. As direct measurement of KIC was impossible for the API X70 pipeline steel, multi-specimen fracture tests were conducted to measure JIC using three-point bend geometry. The J values were calculated from load-displacement (F-δ) plots, and the associated crack extensions were measured from the fracture surface of test specimens. Valid data points were found for the constructed J-Δa plot resulting in JIC=356kN/m. More data points were added analytically to the J-Δa plot to increase the number of data points without performing additional experiments for different J-Δa zones where test data was unavailable. Consequently, displacement (δ) and crack-growth (Δa) from multi-specimen tests (with small displacements) were used simultaneously, resulting in the variation of Δa-δ (crack growth law) and δ-Δa obtained for this steel. For new Δa values, corresponding δ values were first calculated from δ-Δa. Then, corresponding J values for the obtained δ values were calculated from the area under the F-δ record of a full-fractured specimen (with large displacement). Given Δa and J values for new data points, the developed J-Δa plot with extra data points yielded a satisfactory estimation of JIC=345kN/m with only a -3.1% error. This is promising and showed that the developed technique could ease the estimation of JIC significantly and reduce the time and cost of expensive extra fracture toughness tests.

Evaluation of Bending Creep Performance of Laminated Veneer Lumber (LVL) Formwork for the Design of Timber Concrete Composite (TCC) Structures

  • Hyun Bae KIM;Takuyuki YOSHIOKA;Kazuhiko FUJITA;Jun ITO;Haruka NOHARA;Keiji NOHARA;Toshiki NARITA;Wonwoo LEE;Arata HOSOKAWA;Tetsuiji TANAKA
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.375-382
    • /
    • 2024
  • The study focuses on evaluating the bending creep performance of laminated veneer lumber (LVL) formwork in timber concrete composite (TCC) structures. Timber-framed construction is highlighted for its environmental benefits and seismic resistance, but limitations such as poor tensile strength and brittle failure in bending hinder its use in high-rise buildings. Wood-concrete hybrid structures, particularly those using reinforced concrete slabs with TCC floors, emerge as a potential solution. The research aims to understand the time-dependent behavior of TCC components, considering factors like wood and concrete shrinkage and connection creep. The experiment was conducted in western Japan on the TCC floor designed for use in the Kama-city Inatsuki-higashi compulsory education school. The LVL formwork, measuring 9,000 mm by 900 mm, and concrete is loaded onto it for testing. The creep test periods are examined using concrete loading. It employs a comprehensive creep analysis, adhering to Japanese standards, involving deflection measurements and regression analysis to estimate the creep coefficient. Results indicate substantial deformation after shoring removal, suggesting potential reinforcement needs. The study recommends extending test periods for improved accuracy and recognizing regional climate impacts. Overall, the research provides valuable insights into the potential of LVL formwork in TCC structures, emphasizing safety considerations and paving the way for further experimentation under varied conditions to validate structural integrity.

Application of ML algorithms to predict the effective fracture toughness of several types of concret

  • Ibrahim Albaijan;Hanan Samadi;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Nejib Ghazouani
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.247-265
    • /
    • 2024
  • Measuring the fracture toughness of concrete in laboratory settings is challenging due to various factors, such as complex sample preparation procedures, the requirement for precise instruments, potential sample failure, and the brittleness of the samples. Therefore, there is an urgent need to develop innovative and more effective tools to overcome these limitations. Supervised learning methods offer promising solutions. This study introduces seven machine learning algorithms for predicting concrete's effective fracture toughness (K-eff). The models were trained using 560 datasets obtained from the central straight notched Brazilian disc (CSNBD) test. The concrete samples used in the experiments contained micro silica and powdered stone, which are commonly used additives in the construction industry. The study considered six input parameters that affect concrete's K-eff, including concrete type, sample diameter, sample thickness, crack length, force, and angle of initial crack. All the algorithms demonstrated high accuracy on both the training and testing datasets, with R2 values ranging from 0.9456 to 0.9999 and root mean squared error (RMSE) values ranging from 0.000004 to 0.009287. After evaluating their performance, the gated recurrent unit (GRU) algorithm showed the highest predictive accuracy. The ranking of the applied models, from highest to lowest performance in predicting the K-eff of concrete, was as follows: GRU, LSTM, RNN, SFL, ELM, LSSVM, and GEP. In conclusion, it is recommended to use supervised learning models, specifically GRU, for precise estimation of concrete's K-eff. This approach allows engineers to save significant time and costs associated with the CSNBD test. This research contributes to the field by introducing a reliable tool for accurately predicting the K-eff of concrete, enabling efficient decision-making in various engineering applications.

A comparative study on the correlation between Korean foods and the fractures of PFG and all ceramic crowns for posterior applications (구치용 도재소부금관과 전부도재관에 파절을 일으키는 한국음식에 관한 연구)

  • Kim, Jeong-Ho;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.156-163
    • /
    • 2009
  • Statement of problem: Recently, there have been increased esthetic needs for posterior dental restorations. The failure of posterior dental ceramic restoration are possible not only by the characters of the component materials but also by the type of food. Purpose: The research aim was to compare the in vitro fracture resistance of simulated first molar crowns fabricated using 4 dental ceramic systems, full-porcelain-occlusal-surfaced PFG, half-porcelain-occlusal-surfaced PFG, Empress 2, Ice Zirkon and selected Korean foods. Material and methods: Eighty axisymmetric crowns of each system were fabricated to fit a preparation with 1.5- to 2.0-mm occlusal reduction. The center of the occlusal surface on each of 15 specimens per ceramic system was axially loaded to fracture in a Instron 4465, and the maximum load(N) was recorded. Afterwards, selected Korean foods specimens(boiled crab, boiled chicken with bone, boiled beef rib, dried squid, dried anchovy, round candy, walnut shell) were prepared. 15 specimens per each food were placed under the Instron and the maximum fracture loads for them were recorded. The 95% confidence intervals of the characteristic failure load were compared between dental ceramic systems and Korean foods. Afterwards, on the basis of previous results, 14Hz cyclic load was applied on the 4 systems of dental ceramic restorations in MTS. The reults were analyzed by analysis of variance and Post Hoc tests. Results: 95% confidence intervals for mean of fracture load 1. full porcelain occlusal surfaced PFG Crown: 2599.3 to 2809.1 N 2. half porcelain occlusal surfaced PFG Crown: 3689.4 to 3819.8 N 3. Ice Zirkon Crown: 1501.2 to 1867.9 N 4. Empress 2 Crown: 803.2 to 1188.5 N 5. boiled crab: 294.1 to 367.9 N 6. boiled chicken with bone: 357.1 to 408.6 N 7. boiled beef rib: 4077.7 to 4356.0 N 8. dried squid: 147.5 to 190.5 N 9. dried anchovy: 35.6 to 46.5 N 10. round candy: 1900.5 to 2615.8 N 11. walnut shell: 85.7 to 373.1 N under cyclic load(14Hz) in MTS, fracture load and masticatory cycles are: 1. full porcelain occlusal surfaced PFG Crown fractured at 95% confidence intervals of 4796.8-9321.2 cycles under 2224.8 N(round candy)load, no fracture under smaller loads. 2. half porcelain occlusal surfaced PFG Crown fractured at 95% confidence intervals of 881705.1-1143565.7 cycles under 2224.8 N(round candy). no fracture under smaller loads. 3. Ice Zirkon Crown fractured at 95% confidence intervlas of 979993.0-1145773.4 cycles under 382.9 N(boiled chicken with bone). no fracture under smaller loads. 4. Empress 2 Crown fractured at 95% confidence intervals of 564.1-954.7 cycles under 382.9 N(boiled chicken with bone). no fracture under smaller loads. Conclusion: There was a significant difference in fracture resistance between experimental groups. Under single load, Korean foods than can cause fracture to the dental ceramic restorations are boiled beef rib and round candy. Even if there is no fracture under single load, cyclic dynamic load can fracture dental posterior ceramic crowns. Experimental data with 14 Hz dynamic cyclic load are obtained as follows. 1. PFG crown(full porcelain occlusion) was failed after mean 0.03 years under fracture load for round candy(2224.8 N). 2. PFG crown(half porcelain occlusion) was failed after mean 4.1 years under fracture load for round candy(2224.8 N). 3. Ice Zirkon crown was failed after mean 4.3 years under fracture load for boiled chicken with bone(382.9 N). 4. Empress 2 crown was failed after mean 0.003 years under fracture load for boiled chicken with bone(382.9 N).

Effect of thermocycling on shear bond strength and mode of failure of ceramic orthodontic brackets bonded to different porcelain restorations (수 종의 도재 수복물에 부착된 세라믹 브라켓의 전단접착강도와 파절양상에 열순환이 미치는 영향)

  • Kang, Sang-Wook;Son, Woo-Sung;Park, Soo-Byung;Kim, Seong-Sik
    • The korean journal of orthodontics
    • /
    • v.39 no.4
    • /
    • pp.225-233
    • /
    • 2009
  • Objective: The purpose of this study was to investigate the effect of thermocycling and type of porcelain restoration on shear bond strength (SBS) and mode of failure of monocrystalline ceramic brackets. Methods: A total of 60 porcelain discs were made and divided into three equal groups as follows: Ceramco 3, IPS Empress II, Zi-ceram/Vintage ZR. ceramic brackets were bonded to the prepared porcelain surfaces in the same manner. Each group was divided randomly into two subgroups: thermocycled group and non-thermocycled group (control). All samples were tested in shear mode on an universal testing machine. Results: SBS of the non-thermocycled group was clinically acceptable (Ceramco 3: $7.06\;{\pm}\;1.76\;MPa$, IPS Empress II: $7.55\;{\pm}\;2.38\;MPa$, Zi-ceram/Vintage ZR: $7.19\;{\pm}\;1.38\;MPa$). But, SBS of the thermocycled group was significantly reduced (Ceramco 3: $4.88\;{\pm}\;1.00\;MPa$, IPS Empress II: $5.46\;{\pm}\;1.35\;MPa$, Zi-ceram/Vintage ZR: $4.84\;{\pm}\;1.01\;MPa$, p < 0.05). There was no difference between the shear bond strength by type of porcelain restoration. All bonding failure occurred between bracket base and adhesive, except for 2 samples. Conclusions: The results of this study suggest that the type of porcelain restoration did not affect SBS, but thermocycling weakened SBS. Therefore, the effect of thermocycling should be considered when using ceramic brackets in practice.

Shear bond strength and debonding failure mode of ceramic brackets according to the surface treatment of porcelain (도재 표면 처리가 따른 세라믹 브라켓의 전단 접착 강도 및 탈락 양상)

  • Lee, Jeong-Nam;Lee, Cheol-Won
    • The korean journal of orthodontics
    • /
    • v.28 no.5 s.70
    • /
    • pp.803-812
    • /
    • 1998
  • The purpose of this study was to evaluate the shear bond strength and failure mode of ceramic brackets according to the surface treatment of porcelain. Sixty Porcelain samples were randomly divided into six groups of ten samples. Then they were treated as follows: Group 1(silane only), Group 2(etching+silane), Group 3(stone+silane), Group 4(sandblasting+silane), Group 5(stone +etching+silane), Group 6(sandblasting+etching+silane) After surface treatment of porcelain, sixty Transcend 6000 brackets were bonded to the prepared porcelain surface and they were stored in $37^{\circ}C$ saline for 24 hours. An Instron universal testing machine was used to test the shear bond strength of ceramic brackets to porcelain. After debonding, bases of ceramic brackets and porcelain surfaces were examined under scanning electron microscope(SEM) to determine failure mode. Statistical analysis of the data was carried out with one-way ANOVA and Duncan's multiple range test. The results were as follows : 1. The shear bond strength of surface-treated groups 2 to 6 was higher than that of only silane-treated group 1, and there was statistical significance. (P<0.05) 2. There was no significant difference among the groups 3 to 6. (P>0.05) 3. The shear bond strength of etching-surface treated group 2 was significantly lower than those of sandblasting-surface treated group 4, complex surface treated group 5 and group 6. 4. According to the scanning electromicroscopic images, the surface roughness of sandblasting-surface treated group 4 was less than those of the group 5 and 6, but there was no significant difference in the shear bond strength. (P>0.05) As a conclusion we can have a clinically adequate bond strength when an application of silane is done after the treatment of porcelain surface with more than one way to bond ceramic bracket on the porcelain. Also, it is considered that the sandblasting and application of silane is effective for the simplication and convenience of the treatment.

  • PDF