• 제목/요약/키워드: failure testing

검색결과 1,203건 처리시간 0.031초

The push-out bond strength of BIOfactor mineral trioxide aggregate, a novel root repair material

  • Akbulut, Makbule Bilge;Bozkurt, Durmus Alperen;Terlemez, Arslan;Akman, Melek
    • Restorative Dentistry and Endodontics
    • /
    • 제44권1호
    • /
    • pp.5.1-5.9
    • /
    • 2019
  • Objectives: The aim of this in vitro study was to evaluate the push-out bond strength of a novel calcium silicate-based root repair material-BIOfactor MTA to root canal dentin in comparison with white MTA-Angelus (Angelus) and Biodentine (Septodont). Materials and Methods: The coronal parts of 12 central incisors were removed and the roots were embedded in acrylic resin blocks. Midroot dentin of each sample was horizontally sectioned into 1.1 mm slices and 3 slices were obtained from each root. Three canal-like standardized holes having 1 mm in diameter were created parallel to the root canal on each dentin slice with a diamond bur. The holes were filled with MTA-Angelus, Biodentine, or BIOfactor MTA. Wet gauze was placed over the specimens and samples were stored in an incubator at $37^{\circ}C$ for 7 days to allow complete setting. Then samples were subjected to the push-out test method using a universal test machine with the loading speed of 1 mm/min. Data was statistically analyzed using Friedman test and post hoc Wilcoxon signed rank test with Bonferroni correction. Results: There were no significant differences among the push-out bond strength values of MTA-Angelus, Biodentine, and BIOfactor MTA (p > 0.017). Most of the specimens exhibited cohesive failure in all groups, with the highest rate found in Biodentine group. Conclusions: Based on the results of this study, MTA-Angelus, Biodentine, and BIOfactor MTA showed similar resistances to the push-out testing.

A study of fracture loads and fracture characteristics of teeth

  • Sheen, Chang-Yong;Dong, Jin-Keun;Brantley, William Arthur;Han, David Seungho
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권3호
    • /
    • pp.187-192
    • /
    • 2019
  • PURPOSE. The purpose of this in vitro study was to investigate the fracture loads and modes of failure for the full range of natural teeth under simulated occlusal loading. MATERIALS AND METHODS. One hundred and forty natural teeth were taken from mandibles and maxillas of patients. There were 14 groups of teeth with 10 teeth in each group (5 males and 5 females). Each specimen was embedded in resin and mounted on a positioning jig, with the long axis of the tooth at an inclined angle of 30 degrees. A universal testing machine was used to measure the compression load at which fracture of the tooth specimen occurred; loads were applied on the incisal edge and/or functional cusp. RESULTS. The mean fracture load for the mandibular first premolar was the highest (2002 N) of all the types of teeth, while the mean fracture load for the maxillary first premolar was the lowest (525 N). Mean fracture loads for the mandibular and maxillary incisors, and the first and second maxillary premolars, had significantly lower values compared to the other types of teeth. The mean fracture load for the teeth from males was significantly greater than that for the teeth from females. There was an inverse relationship between age and mean fracture load, in which older teeth had lower fracture loads compared to younger teeth. CONCLUSION. The mean fracture loads for natural teeth were significantly different, with dependence on tooth position and the sex and age of the individual.

금속 보스 압력분포비 설계 변경에 따른 복합재 연소관 파열압력에 관한 연구 (A Study on the Burst Pressure of Composite Motor Case due to the Change of Metal Boss PDR Design)

  • 김남조;정승민;윤경수;정상기;황태경
    • 한국추진공학회지
    • /
    • 제23권4호
    • /
    • pp.21-27
    • /
    • 2019
  • 연소가스에 의한 내압 조건에서 필라멘트 와인딩 공법으로 제작되는 복합재 연소관은 돔에서 구조적으로 취약해진다. 본 논문에서는 압력분포비(PDR) 변화에 따른 복합재 돔의 파열압력을 비교하기 위해 유한 요소 해석을 수행하였다. 돔 내/외면 응력, 금속 보스 체적을 산출함으로써, 정량적으로 복합재 연소관의 성능을 비교하였다. 그 결과, PDR 2.5-3.0에서 파손 모드의 임계점이 존재함을 확인하였다. PDR 2.5-3.5 설계는 연소관 파열압력의 변동 없이 금속 보스 무게 감량이 가능하며, 돔 형상 및 오프닝 크기에 대해 설계 기준값이 변경되므로 해석 및 시험을 통한 규명이 필요하다.

Cyclic testing of scaled three-story special concentrically braced frame with strongback column

  • Chen, Chui-Hsin;Tsai, Yi-Rung;Tang, Yao
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.163-173
    • /
    • 2019
  • For Special Concentrically Braced Frame (SCBF), it is common that the damage concentrates at a certain story instead of spreading over all stories. Once the damage occurs, the soft-story mechanism is likely to take place and possibly to result in the failure of the whole system with more damage accumulation. In this study, we use a strongback column which is an additional structural component extending along the height of the building, to redistribute the excessive deformation of SCBF and activate more structural members to dissipate energy and thus avoid damage concentration and improve the seismic performance of SCBF. We tested one-third-scaled, three-story, double-story X SCBF specimens with static cyclic loading procedure. Three specimens, namely S73, S42 and S0, which represent different combinations of stiffness and strength factors ${\alpha}$ and ${\beta}$ for the strongback columns, were designed based on results of numerical simulations. Specimens S73 and S42 were the specimens with the strongback columns, and S0 is the specimen without the strongback column. Test results show that the deformation distribution of Specimen S73 is more uniform and more brace members in three stories perform nonlinearly. Comparing Drift Concentration Factor (DCF), we can observe 29% and 11% improvement in Specimen S73 and S42, respectively. This improvement increases the nonlinear demand of the third-story braces and reduces that of the first-story braces where the demand used to be excessive, and, therefore, postpones the rupture of the first-story braces and enhances the ductility and energy dissipation capacity of the whole SCBF system.

간헐 압축응력완화 시험법과 시간-온도 중첩 이론을 이용한 NBR 오링의 노화 거동 분석 연구 (Study on the Degradaion Behavior of Acrylonitrile Rubber(NBR) O-ring by Intermittent CSR and Time-Temperature Superposition Principle)

  • 이진혁;배종우;최명찬;윤유미;김원호;박성한;조남주
    • 한국추진공학회지
    • /
    • 제23권1호
    • /
    • pp.46-51
    • /
    • 2019
  • Intermittent CSR 측정법을 이용하여 NBR 오링의 노화 거동과 수명 예측에 관하여 연구하였다. Intermittent CSR jig는 오링의 실제 사용 환경을 고려하여 설계 제작하였다. 오링의 노화 거동은 $40{\sim}120^{\circ}C$에서의 가속 노화 연구를 통하여 관찰하였다. 오링은 $80^{\circ}C$ 이하에서 비선형 노화 거동을 나타내었다. 오링의 수명은 고장 조건 20%에 대하여 Arrhenius plot으로부터 32.5년, WLF plot으로 부터 22.6년으로 나타났다.

The Effect of RGEC and EPS on Stock Prices: Evidence from Commercial Banks in Indonesia

  • SHOLICHAH, Mu'minatus;JIHADI, M.;WIDAGDO, Bambang;MARDIANI, Novita;NURJANNAH, Dewi;AULIA, Yoosita
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권8호
    • /
    • pp.67-74
    • /
    • 2021
  • This study aims to examine and analyze the effect of Risk Profile, Good Corporate Governance (GCG), Earnings, Capital (RGEC), and Earnings per Share (EPS) on stock prices with financial distress as an intervening variable. The sampling technique used purposive sampling based on certain criteria and data used was secondary data, that is, annual reports of commercial banks in Indonesia for the period of 2012-2018 with a sample of 23 banks from a total population of 81 banks. This type of research is explanative with a quantitative descriptive approach to describe or explain quantitative data. The data obtained was analyzed using SEM (Structural Equation Model) with the AMOS Program. The results showed that RGEC, EPS, and financial distress affect stock prices. This is based on testing the direct effect as indicated by a p-value that is smaller than 0.05. Based on the mediation test, the results show that financial distress cannot mediate the effect of RGEC and EPS on stock prices as indicated by a p-value greater than 0.05. The implication of this research is very important for investors to analyze stock price changes based on RGEC, EPS, and financial distress to gain profits. In addition, there are various warning signs indicating that a company is experiencing financial distress or it is heading towards such a state. Being aware of these signs can help prevent failure.

Safety and antifatigue effect of Korean Red Ginseng capsule: A randomized, double-blind and placebo-controlled clinical trial

  • Yang, Yi;Wang, Hong;Zhang, Ming;Shi, Mengxue;Yang, Cailing;Ni, Qiang;Wang, Qi;Li, Jing;Wang, Xuemei;Zhang, Chen;Li, Zhi
    • Journal of Ginseng Research
    • /
    • 제46권4호
    • /
    • pp.543-549
    • /
    • 2022
  • Background: In physical activity or labor, the human body is in a state of high intensity stress, and all parts or physiological functions of the body respond positively to maintain or balance the need for movement. The human body has many physiological changes in the process of movement, and fatigue is the external manifestation of various complex changes inside the human body. Fatigue is also a physiological mechanism of self-protection after the body reaches a certain level of activity, which can prevent the occurrence of life-threatening excessive functional failure. The generation of fatigue is a very complex process, and its mechanism has not been concluded yet. Therefore, it is an important work to search and screen the effective components of natural plants that have anti-fatigue effect and to explore their mechanism. Methods: This was a 8-week, randomized, double-blind, placebo-controlled clinical trial. A total of 110 subjects who passed physical examination were included according to the scheme design, and randomly divided into a test group which was given KRG and a placebo control group. The calculation is carried out according to the standard of sub-high-intensity exercise test. Results: There was no adverse effect on safety index of subjects after taking red ginseng capsule. After KRG treatment, subjective strength grade is significant lower than placebo treatment. Blood lactic acid content is significantly get lower after trial in KRG group, and significant lower than placebo group. Creatine phosphokinase(CK) content is significantly get lower after trial in KRG group, and significant lower than placebo group. Conclusion: According to the criterion in the test scheme, the result shows that KRG is helpful on relieving physical fatigue.

An Ensemble Approach to Detect Fake News Spreaders on Twitter

  • Sarwar, Muhammad Nabeel;UlAmin, Riaz;Jabeen, Sidra
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.294-302
    • /
    • 2022
  • Detection of fake news is a complex and a challenging task. Generation of fake news is very hard to stop, only steps to control its circulation may help in minimizing its impacts. Humans tend to believe in misleading false information. Researcher started with social media sites to categorize in terms of real or fake news. False information misleads any individual or an organization that may cause of big failure and any financial loss. Automatic system for detection of false information circulating on social media is an emerging area of research. It is gaining attention of both industry and academia since US presidential elections 2016. Fake news has negative and severe effects on individuals and organizations elongating its hostile effects on the society. Prediction of fake news in timely manner is important. This research focuses on detection of fake news spreaders. In this context, overall, 6 models are developed during this research, trained and tested with dataset of PAN 2020. Four approaches N-gram based; user statistics-based models are trained with different values of hyper parameters. Extensive grid search with cross validation is applied in each machine learning model. In N-gram based models, out of numerous machine learning models this research focused on better results yielding algorithms, assessed by deep reading of state-of-the-art related work in the field. For better accuracy, author aimed at developing models using Random Forest, Logistic Regression, SVM, and XGBoost. All four machine learning algorithms were trained with cross validated grid search hyper parameters. Advantages of this research over previous work is user statistics-based model and then ensemble learning model. Which were designed in a way to help classifying Twitter users as fake news spreader or not with highest reliability. User statistical model used 17 features, on the basis of which it categorized a Twitter user as malicious. New dataset based on predictions of machine learning models was constructed. And then Three techniques of simple mean, logistic regression and random forest in combination with ensemble model is applied. Logistic regression combined in ensemble model gave best training and testing results, achieving an accuracy of 72%.

Dynamic punching shear tests of flat slab-column joints with 5D steel fibers

  • Alvarado, Yezid A.;Torres, Benjamin;Buitrago, Manuel;Ruiz, Daniel M.;Torres, Sergio Y.;Alvarez, Ramon A.
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.281-292
    • /
    • 2022
  • This study aimed to analyze the dynamic punching shear performance of slab-column joints under cyclic loads with the use of double-hooked end (5D) steel fibers. Structural systems such as slab-column joints are widely found in infrastructures. The susceptibility to collapse of such structures when submitted to seismic loads is highly dependent on the structural performance of the slab-column connections. For this reason, the punching capacity of reinforced concrete (RC) structures has been the subject of a great number of studies. Steel fibers are used to achieve a certain degree of ductility under seismic loads. In this context, 5D steel hooked fibers provide high levels of fiber anchoring, tensile strength and ductility. However, only limited research has been carried out on the performance under cyclic loads of concrete structural members containing steel fibers. This study covers this gap with experimental testing of five different full-scale subassemblies of RC slab-column joints: one without punching reinforcement, one with conventional punching reinforcement and three with 5D steel fibers. The subassemblies were tested under cyclic loading, which consisted of applying increasing lateral displacement cycles, such as in seismic situations, with a constant axial load on the column. This set of cycles was repeated for increasing axial loads on the column until failure. The results showed that 5D steel fiber subassemblies: i) had a greater capacity to dissipate energy, ii) improved punching shear strength and stiffness degradation under cyclic loads; and iii) increased cyclic loading capacity.

Shake-table tests on moment-resisting frames by introducing engineered cementitious composite in plastic hinge length

  • Khan, Fasih A.;Khan, Sajjad W.;Shahzada, Khan;Ahmad, Naveed;Rizwan, Muhammad;Fahim, Muhammad;Rashid, Muhammad
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.23-34
    • /
    • 2022
  • This paper presents experimental studies on reinforced concrete moment resisting frames that have engineered cementitious composite (ECC) in plastic hinge length (PHL) of beam/column members and beam-column joints. A two-story frame structure reduced by a 1:3 scale was further tested through a shake-table (seismic simulator) using multiple levels of simulated earthquake motions. One model conformed to all the ACI-318 requirements for IMRF, whereas the second model used lower-strength concrete in the beam/column members outside PHL. The acceleration time history of the 1994 Northridge earthquake was selected and scaled to multiple levels for shake-table testing. This study reports the observed damage mechanism, lateral strength-displacement capacity curve, and the computed response parameters for each model. The tests verified that nonlinearity remained confined to beam/column ends, i.e., member joint interface. Calculated response modification factors were 11.6 and 9.6 for the code-conforming and concrete strength deficient models. Results show that the RC-ECC frame's performance in design-based and maximum considered earthquakes; without exceeding maximum permissible drift under design-base earthquake motions and not triggering any unstable mode of damage/failure under maximum considered earthquakes. This research also indicates that the introduction of ECC in PHL of the beam/column members' detailing may be relaxed for the IMRF structures.