• 제목/요약/키워드: failure strain

검색결과 1,448건 처리시간 0.022초

Plywood의 기계적 특성 및 파손 거동 분석에 관한 실험적 연구 (An Experimental Study on Mechanical Properties and Failure Behavior of Plywood)

  • 차승주;김정대;김정현;오훈규;김용태;박성보;이제명
    • 대한조선학회논문집
    • /
    • 제56권4호
    • /
    • pp.335-342
    • /
    • 2019
  • The objective of this study is to analyze the mechanical properties of plywood used as a thermal insulating material for LNG CCS (Liquefied Natural Gas, Cargo Containment System). It is created by bonding an odd number of parallel and perpendicular direction for preventing contraction and expansion of wood. Also plywood is widely used as LNG CCS insulating material because of its durability, light weight and high stiffness. Since LNG CCS is loaded with liquid cargo, the impact load by sloshing during operation and the wide temperature range (room temperature, low temperature, cryogenic temperature) exposed during loading, unloading should be considered. The thickness of the plywood which is used for the membrane type MARKIII was selected as the thickness of the test specimen. In this present study, plywood is analyzed by the fracture behavior and mechanical properties of plywood by temperature and grain direction. In addition, it is necessary to analyze the fracture shape and predict the fracture strain by using regression model because the critical load may cause cracks inside the tank, which may affect the leakage of cryogenic liquid.

Outcomes of Non-Operative Management for Pseudarthrosis after Pedicle Subtraction Osteotomies at Minimum 5 Years Follow-Up

  • Kim, Yong-Chan;Kim, Ki-Tack;Kim, Cheung-Kue;Hwang, Il-Yeong;Jin, Woo-Young;Lenke, Lawrence G.;Cha, Jae-Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권5호
    • /
    • pp.567-576
    • /
    • 2019
  • Objective : Minimal data exist regarding non-operative management of suspected pseudarthrosis after pedicle subtraction osteotomy (PSO). This study reports radiographic and clinical outcomes of non-operative management for post-PSO pseudarthrosis at a minimum 5 years post-detection. Methods : Nineteen consecutive patients with implant breakage indicating probable pseudarthrosis after PSO surgery (13 women/six men; mean age at surgery, 58 years) without severe pain and disability were treated with non-operative management (mean follow-up, 5.8 years; range, 5-10 years). Non-operative management included medication, intermittent brace wearing and avoidance of excessive back strain. Radiographic and clinical outcomes analysis was performed. Results : Sagittal vertical axis (SVA), proximal junctional angle, thoracic kyphosis achieved by a PSO were maintained after detection of pseudarthrosis through ultimate follow-up. Lumbar lordosis and PSO angle decreased at final follow-up. There was no significant change in Oswestry Disability Index (ODI) scores and Scoliosis Research Society (SRS) total score, or subscales of pain, self-image, function, satisfaction and mental health between detection of pseudarthrosis and ultimate follow-up. SVA greater than 11 cm showed poorer ODI and SRS total score, as well as the pain, self-image, and function subscales (p<0.05). Conclusion : Non-operative management of implant failure of probable pseudarthrosis after PSO offers acceptable outcomes even at 5 years after detection of implant breakage, provided SVA is maintained. As SVA increased, outcome scores decreased in this patient population.

굽힘 하중을 받는 평직물 CFRP 직교 격자 쉘의 점진적 손상 해석 (Progressive Damage Analysis of Plain Weave Fabric CFRP Orthogonal Grid Shell Under Bending Load)

  • 임성준;백상민;김민성;박민영;박찬익
    • 한국항공우주학회지
    • /
    • 제47권4호
    • /
    • pp.256-265
    • /
    • 2019
  • 본 논문에서는 평직물 CFRP로 제작한 직교 격자 쉘의 굽힘 하중에 의한 점진적 손상 연구를 수행하였다. 직교 격자는 복합재 바닥면과 함께 경화하여 제작하였다. 굽힘을 받는 직교 격자 쉘의 점진적 손상 해석은 Hashin-Rotem 파손 기준과 Matzenmiller-Lubliner-Taylor (MLT) 모델으로 비선형 유한요소법을 이용하여 수행하였다. 또한, 직교 격자 쉘에 대한 3점 굽힘 시험을 수행하였으며, 시험 결과와 해석 결과를 비교하였다. 변형률과 변위에 대한 시험과 해석 결과는 유사하게 나타났다. 손상 영역은 점진적 손상 해석으로 예측하였으며, 육안 검사와 초음파 비파괴 검사를 통해 측정한 결과와 비교하였다.

Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone

  • Maruvanchery, Varun;Kim, Eunhye
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.57-67
    • /
    • 2019
  • Water-induced strength reduction is one of the most critical causes for rock deformation and failure. Understanding the effects of water on the strength, toughness and deformability of rocks are of a great importance in rock fracture mechanics and design of structures in rock. However, only a few studies have been conducted to understand the effects of water on fracture properties such as fracture toughness, crack propagation velocity, consumed energy, and microstructural damage. Thus, in this study, we focused on the understanding of how microscale damages induced by water saturation affect mesoscale mechanical and fracture properties compared with oven dried specimens along three notch orientations-divider, arrester, and short transverse. The mechanical properties of calcite-cemented sandstone were examined using standard uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS) tests. In addition, fracture properties such as fracture toughness, consumed energy and crack propagation velocity were examined with cracked chevron notched Brazilian disk (CCNBD) tests. Digital Image Correlation (DIC), a non-contact optical measurement technique, was used for both strain and crack propagation velocity measurements along the bedding plane orientations. Finally, environmental scanning electron microscope (ESEM) was employed to investigate the microstructural damages produced in calcite-cemented sandstone specimens before and after CCNBD tests. As results, both mechanical and fracture properties reduced significantly when specimens were saturated. The effects of water on fracture properties (fracture toughness and consumed energy) were predominant in divider specimens when compared with arrester and short transverse specimens. Whereas crack propagation velocity was faster in short transverse and slower in arrester, and intermediate in divider specimens. Based on ESEM data, water in the calcite-cemented sandstone induced microstructural damages (microcracks and voids) and increased the strength disparity between cement/matrix and rock forming mineral grains, which in turn reduced the crack propagation resistance of the rock, leading to lower both consumed energy and fracture toughness ($K_{IC}$).

Right Atrial Deformation Mechanics in Children with Adenotonsillar Hypertrophy

  • Kang, Soo Jung;Kwon, Yoo Won
    • Journal of Cardiovascular Imaging
    • /
    • 제26권4호
    • /
    • pp.201-213
    • /
    • 2018
  • BACKGROUND: Children with significant adenotonsillar hypertrophy (ATH) may show right ventricular (RV) dysfunction. We aimed to evaluate RV dysfunction in such children before adenotonsillectomy by evaluating peak longitudinal right atrial (RA) strain (PLRAS) in systole. PLRAS, electrocardiogram (ECG) and conventional echocardiographic parameters were compared to distinguish children with significant ATH with sleep-related breathing disorder (ATH-SRBD) from controls. METHODS: Fifty-six children (23 controls and 33 children with ATH-SRBD without symptoms of heart failure) were retrospectively studied. Preoperative echocardiograms and ECGs of children with ATH-SRBD who underwent adenotonsillectomy were compared to those of controls. Available postoperative ECGs and echocardiograms were also analyzed. RESULTS: Preoperatively, prolonged maximum P-wave duration (Pmax) and P-wave dispersion (PWD), decreased PLRAS, and increased tricuspid annulus E/E' were found in children with ATH-SRBD compared to those of controls. From the receiver operating characteristic curves, PLRAS was not inferior compared to tricuspid annulus E/E', Pmax, and PWD in differentiating children with ATH-SRBD from controls; however, the discriminative abilities of all four parameters were poor. In children who underwent adenotonsillectomy, echocardiograms $1.2{\pm}0.4$ years after adenotonsillectomy showed no difference in postoperative PLRAS and tricuspid annulus E/E' when compared with those of the preoperative period. CONCLUSIONS: Impaired RA deformation was reflected as decreased PLRAS in children with ATH-SRBD before adenotonsillectomy. Decreased PLRAS in these children may indicate subtle RV dysfunction and increased proarrhythmic risk. However, usefulness of PLRAS as an individual parameter in differentiating preoperative children with ATH-SRBD from controls was limited, similar to those of tricuspid annulus E/E', Pmax, and PWD.

FEM 시뮬레이션을 이용한 임펠러의 구조 안전성 평가 (The Evaluation of Structural Safety of Impeller Using FEM Simulation)

  • 정종윤
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.41-47
    • /
    • 2020
  • As modern industries are highly being developed, it is required that mechanical parts have to be manufactured with a high precision. In order to have precise parts, error-free designs have to be done before manufacturing with accuracy. For this intention being fulfilled, a mechanical analysis is essential for design proof. Nowadays, FEM simulation is a popular tool for verifying a machine design. In this paper, an impeller, being utilized in a compressor or an oil mixer as an actuator, is studied for an evaluation. The purpose of this study is to present a safety of an impeller for a proof of its mechanical stability. A static analysis for stress, strain, and deformation within a regular usage is examined. This simulation test shows 357.26×106 Pa for maximum equivalent stress and 0.207mm for total deformation. A fatigue test is carried to provide durability and its result shows that minimum safety factor is 3.2889, which guarantees that it runs without a fatigue failure in 106 cycles. The natural frequencies for the impeller is ranged from 228.09Hz to 1,253.6Hz for the 1st to the 6th mode. Total deformations at these natural frequencies are shown from 6.84mm to 12.631mm. Furthermore, Campbell diagram reveals that a critical speed is not found throughout regular rotational speeds. From the test results for the analysis, this paper concludes that the suggested impeller is proved for its mechanical safety and good to utilize at industries.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

외부 강재 보강으로 구성한 합성 부재의 휨 성능에 대한 실험 (Experiments on Flexural Performance of Composite Members Strengthened by External Steel Plates)

  • 황병훈;신진원;전재호;김윤용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권5호
    • /
    • pp.143-150
    • /
    • 2022
  • 이 논문은 내진 성능 향상 목적으로 외부 강재로 보강한 콘크리트 부재의 휨 성능에 대한 실험적 연구이다. 구조물을 보강하기 위하여 벽과 기둥을 보강재로 감싸는 형식의 보강 방법을 적용하였는데, 이 구조물에서 가장 긴 지간을 갖는 벽체 일부 단면을 실물 크기로 제작하여 정적 재하 실험을 수행하는 방법으로 강성 보강효과를 확인하였다. 실험 결과, 보강 단면은 충분한 보강 성능을 발현하는 것을 확인하였으나, 가력기의 용량 부족과 안전상의 문제로 파괴까지의 거동을 확인하지는 못하였다. 보강재가 벽체에 작용하는 면외방향 모멘트를 효과적으로 부담하고 있는 것을 확인하였고, 측정된 변위와 철근 변형률 등의 분석을 통하여 보강 전 부재에 비하여 부재 강성과 휨모멘트 저항능력이 향상되었음을 검증하였다.

Modeling of a rockburst related to anomalously low friction effects in great depth

  • Zhan, J.W.;Jin, G.X.;Xu, C.S.;Yang, H.Q.;Liu, J.F.;Zhang, X.D.
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.113-131
    • /
    • 2022
  • A rockburst is a common disaster in deep-tunnel excavation engineering, especially for high-geostress areas. An anomalously low friction effect is one of the most important inducements of rockbursts. To elucidate the correlation between an anomalously low friction effect and a rockburst, we establish a two-dimensional prediction model that considers the discontinuous structure of a rock mass. The degree of freedom of the rotation angle is introduced, thus the motion equations of the blocks under the influence of a transient disturbing force are acquired according to the interactions of the blocks. Based on the two-dimensional discontinuous block model of deep rock mass, a rockburst prediction model is established, and the initiation process of ultra-low friction rockburst is analyzed. In addition, the intensity of a rockburst, including the location, depth, area, and velocity of ejection fragments, can be determined quantitatively using the proposed prediction model. Then, through a specific example, the effects of geomechanical parameters such as the different principal stress ratios, the material properties, a dip of principal stress on the occurrence form and range of rockburst are analyzed. The results indicate that under dynamic disturbance, stress variation on the structural surface in a deep rock mass may directly give rise to a rockburst. The formation of rockburst is characterized by three stages: the appearance of cracks that result from the tension or compression failure of the deformation block, the transformation of strain energy of rock blocks to kinetic energy, and the ejection of some of the free blocks from the surrounding rock mass. Finally, the two-dimensional rockburst prediction model is applied to the construction drainage tunnel project of Jinping II hydropower station. Through the comparison with the field measured rockburst data and UDEC simulation results, it shows that the model in this paper is in good agreement with the actual working conditions, which verifies the accuracy of the model in this paper.

Bond behavior between concrete and prefabricated Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC) plates

  • Mansour, Walid;Sakr, Mohammed A.;Seleemah, Ayman A.;Tayeh, Bassam A.;Khalifa, Tarek M.
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.305-316
    • /
    • 2022
  • Externally bonded ultrahigh performance fiber-reinforced concrete (UHPFRC) is commonly used as a strengthening material for reinforced concrete (RC) structures. This study reports the results of an experimental program investigating the bonding behavior between concrete and prefabricated UHPFRC plates. The overall experimental program is consisting of five RC specimens, which are strengthened using the different lengths and widths of prefabricated UHPFRC plates. These specimens were analyzed using the pull-pull double-shear test. The performance of each strengthened specimen is presented, discussed and compared in terms of failure mode, maximum load, load-slip relationship, fracture energy and strain distribution. Specimen C-25-160-300 which bonded along the whole width of 160 mm recorded the highest maximum load (109.2 kN) among all the analysed specimens. Moreover, a 3D numerical finite element model (FEM) is proposed to simulate the bond behavior between concrete and UHPFRC plates. Moreover, this study reviews the analytical models that can predict the relationship between the maximum bond stress and slip for strengthened concrete elements. The proposed FEM is verified against the experimental program and then used to test 36 RC specimens strengthened with prefabricated UHPFRC plates with different concrete grades and UHPFRC plate widths. The obtained results together with the review of analytical models helped in the formation of a design equation for estimating the bond stress between concrete and prefabricated UHPFRC plates.