• Title/Summary/Keyword: failure patterns

Search Result 600, Processing Time 0.027 seconds

Crack initiation and fragmentation processes in pre-cracked rock-like materials

  • Lee, Jooeun;Hong, Jung-Wuk
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1047-1059
    • /
    • 2018
  • This paper focuses on the cracking and fragmentation process in rock materials containing a pair of non-parallel flaws, which are through the specimen thickness, under vertical compression. Several numerical experiments are conducted with varying flaw arrangements that affect the initiation and tensile wing cracks, shear crack growth, and crack coalescing behaviors. To obtain realistic numerical results, a parallelized peridynamics formulation coupled with a finite element method, which is able to capture arbitrarily occurring cracks, is employed. From previous studies, crack initiation and propagation of tensile wing cracks, horsetail cracks, and anti-wing cracks are well understood along with the coalescence between two parallel flaws. In this study, the coalescence behaviors, their fragmentation sequences, and the role of an x-shaped shear band in rock material containing two non-parallel flaws are discussed in detail on the basis of simulation results strongly correlated with previous experimental results. Firstly, crack initiation and propagation of tensile wing cracks and shear cracks between non-parallel flaws are investigated in time-history and then sequential coalescing behavior is analyzed. Secondly, under the effect of varying inclination angles of two non-parallel flaws and overlapping ratios between a pair of non-parallel flaws, the cracking patterns including crack coalescence, fragmentation, and x-shaped shear band are investigated. These numerical results, which are in good agreement with reported physical test results, are expected to provide insightful information of the fracture mechanism of rock with non-parallel flaws.

Fault Symptom Analysis and Diagnosis for a Single-Effect Absorption Chiller (흡수식 냉동시스템의 고장현상 분석과 진단)

  • Han, Dongwon;Chang, Young-Soo;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.587-595
    • /
    • 2015
  • In this study, fault symptoms were simulated and analyzed for a single-effect absorption chiller. The fault patterns of fault detection parameters were tabulated using the fault symptom simulation results. Fault detection and diagnosis by a process history-based method were performed for the in-situ experiment of a single-effect absorption chiller. Simulated fault modes for the in-situ experimental study are the decreases in cooling water and chilled water mass flow rates. Five no-fault reference models for fault detection of a single-effect absorption chiller were developed using fault-free steady-state data. A sensitivity analysis of fault detection using the normalized distance method was carried out with respect to fault progress. When mass flow rates of the cooling and chilled water decrease by more than 19.3% and 17.8%, respectively, the fault can be detected using the normalized distance method, and COP reductions are 6.8% and 4.7%, respectively, compared with normal operation performance. The pattern recognition method for fault diagnosis of a single-effect absorption chiller was found to indicate each failure mode accurately.

Estimation of Interfacial Adhesion through the Micromechanical Analysis of Failure Mechanisms in DLC Film

  • Jeong, Jeung-Hyun;Park, Hae-Seok;Ahn, Jeong-Hoon;Dongil Kwon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.73-81
    • /
    • 1997
  • In this paper, it is intended to present more reproducible and quantitative method for adhesion assemssement. In scratch test, micromechanical analysis on the stress state beneath the indenter was carried out considering the additional blister field. The interface adhesion was quantified as work of adhesion through Griffith energy approach on the basis of the analyzed stress state. The work of adhesion for DLC film/WC-Co substrate calculated through the proposed analysis shows the identical value regardless of distinctly different critical loads measured with the change of film thickness and scratching speed. On the other hand, uniaxial loading was imposed on DCL film/Al substrate, developing the transverse film cracks perpendicular to loading direction. Since this film cracking behavior depends on the relative magnitude of adhesion strength to film fracture strength, the quantification of adhesion strength was given a trial through the micromechanical analysis of adhesion-dependence of film cracking patterns. The interface shear strength can be quantified from the measurement of strain $\varepsilon$s and crack spacing $\lambda$ at the cessation of film cracking.

  • PDF

EFFECTS OF CHEMICALLY CURED RESIN AND LIGHT CURED RESIN ON SHEAR BOND STRENGTH OF METAL BRACKET AND CERAMIC BRACKET (화학중합형 및 광중합형 레진접착제가 금속 및 도재브라켓의 전단결합강도에 미치는 영향)

  • Yoon, Duk-Sang;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.24 no.1 s.44
    • /
    • pp.125-134
    • /
    • 1994
  • This study was designed for comparison of shear bond strengths and failure patterns of four experimental groups which combinated mesh-backed metal brackets and texture based ceramic brackets (Transcend series $2000^{(TM)}$) with chemically cured resin (Mono $Lok2^{(TM)}$) and visible light cured resin $(Transbond^{(TM)})$. Brackets were bonded on the extracted human bicuspids, after etching them by manufacturer's recommand, and the shear bond strengths were measured on the Instron machine after 24 hrs passed in the $37^{\circ}C$ water bath. The results were as follows. 1. Ceramic brackets, transcend series $2000^{(TM)}$, bonded with $MonoLok2^{(TM)}$ showed statistically higher shear bond strength than mesh-backed metal brackets bonded with $MonoLok2^{(TM)}$. 2. There was no significant difference in shear bond strengths between metal and ceramic brackets bonded with $(Transbond^{(TM)})$. 3. Ceramic brackets bonded with both $(Transbond^{(TM)})$) and $MonoLok2^{(TM)}$ showed primarily fractures between brackets adhesive interface. 4. Enamel crack was not found in anyone specimen.

  • PDF

Clustering Patterns in the Manufacturing Sectors of Japan

  • Carvajal, Carlos A.;Watanabe, Chihiro
    • Journal of Technology Innovation
    • /
    • v.12 no.2
    • /
    • pp.99-126
    • /
    • 2004
  • Japan's economic clusters are characterized by their high level of diversity. In essence, Japanese economic clusters are not limited to single industries; they comprise numerous manufacturing industries and firms which cluster in specific heterogeneous economic zones, vice political boundaries. Japanese manufacturing sectors are showing an increased level of diversity, resulting in the spread of experience and knowledge among clusters, and sustained growth at the point of industrial structural transformation. Japan's Ministry of Education, Culture, Sports, Science and Technology (MEXT) proposed the creation of intellectual clusters for the purpose of promoting research and development(R&D) activities resulting in the stimulation and development of new technologies. The Ministry of Economy Trade and Industry (METI) is also proposing the industrial cluster plan with the aim to promote the local rebirth and revitalization of the Japanese industrial sector. This paper proposes a methodological analysis which will result in the integration of the two policies currently implemented by the Japanese government. If the current policies are not coordinated and integrated, artificial firms and sectors will continue to hamper innovation and discourage competitiveness, which will ultimately result in Japan's loss of economic opportunities within Asia. In the worst case, failure to act on current economic deficiencies illuminated in this paper could cost Japan its position as an Asian economic leader.

  • PDF

A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams using High Strength Concrete (고강도 콘크리트를 사용한 철근콘크리트 보의 전단피로거동에 관한 연구)

  • 곽계환;박종건
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.119-130
    • /
    • 1999
  • Recently, as the building structure has been larger, higher, longer and more specialized, the demand of material with high-strength concrete for building has been increasing. In this research, silica-fume was used as an admixture in order to get a high-strength concrete. From the test result, High-strength concrete with cylinder strength of 1,200kgf/$\textrm{cm}^2$ in 28-days was produced and tested. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The relation of cycle loading to deflections on the mid-span, the crack propagation and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed to 57~66 percent of the static ultimate strength. Fatigue strength about two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

Active Control of Offshore Structures for Wave Response Reduction Using Probabilistic Neural Network

  • Kim, Doo-Kie;Kim, Dong-Hyawn;Chang, Sang-Kil;Chang, Seong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.1-8
    • /
    • 2006
  • Offshore structures are subjected to wave, wind, and earthquake loads. The failure of offshore structures can cause sea pollution, as well as losses of property and lives. Therefore, safety of the structure is an important issue. The reduction of the dynamic response of offshore towers, subjected wind generated random ocean waves, is a critical problem with respect to serviceability, fatigue life and safety of the structure. In this paper, a structural control method is proposed to control the vibration of offshore structures by the probabilistic neural network (PNN). The state vectors of the structure and control forces are used for training patterns of the PNN, in which control forces are prepared by linear quadratic regulator (LQR) control algorithm. The proposed algorithm is applied to a fixed offshore structure under random ocean waves. Active control of the fixed offshore structure using the PNN control algorithm shows good results.

A Characteristic EEG Pattern of Angelman Syndrome

  • Yoon, Joong-Soo;Song, Woon-Heung;Choi, Hwa-Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.42 no.2
    • /
    • pp.97-102
    • /
    • 2010
  • The two new female cases of Angelman syndrome (AS) were described, which diagnosed on the basis of clinical features (dysmorphic facial features, severe mental retardation with absent speech, peculiar jerky movements, ataxic gait and paroxysms of inappropriate laughter) and neurophysiological findings. Failure to detect the deletion of the long arm of chromosome 15 or the absence of epileptic seizure were not considered sufficient to exclude a diagnosis of AS. Feeding problems, developmental delay and early signs of ataxia, especially tremor on handling objects and unstable posture when seated, proved effective as the clinical markers for early diagnosis of AS. Most of the authors agreed about the existence of three main EEG patterns in AS which may appear in isolation or in various combinations in the same patient. The most frequently observed pattern in children has prolonged runs of high amplitude rhythmic 2-3 Hz activity predominantly over the frontal region with superimposed interictal epileptiform discharges. High amplitude rhythmic 4-6 Hz activity, prominent in the occipital regions, with spikes, which can be facilitated by eye closure, is often seen in children under the age of 12 years. The EEG findings are characteristic of AS when seen in the appropriate clinical context and can be helpful to identify AS patients at an early age when genetic counselling may be particularly important.

  • PDF

Influence of vertical load on in-plane behavior of masonry infilled steel frames

  • Emami, Sayed Mohammad Motovali;Mohammadi, Majid
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.609-627
    • /
    • 2016
  • Results of an experimental program are presented in this paper for the influence of vertical load on the in-plane behavior of masonry infilled steel frames. Five half-scaled single-story, single-bay steel frame specimens were tested under cyclic lateral loading. The specimens included four infilled frames and one bare frame. Two similar specimens as well as the bare frame had moment-resisting steel frames, while the remaining two specimens had pinned steel frames. For each frame type, one specimen was tested under simultaneous vertical and lateral loading, whereas the other was subjected only to lateral loading. The experimental results show that the vertical load changes the cracking patterns and failure modes of the infill panels. It improves dissipated hysteresis energy and equivalent viscous damping. Global responses of specimens, including stiffness and maximum strength, do no change by vertical loading considerably. Regarding the ductility, the presence of vertical load is ignorable in the specimen with moment-resisting frame. However, it increases the ductility of the infilled pinned frame specimen, leading to an enhancement in the m-factor by at least 2.5 times. In summary, it is concluded that the influence of the vertical load on the lateral response of infilled frames can be conservatively ignored.

Evaluate the effect of steel, polypropylene and recycled plastic fibers on concrete properties

  • Fayed, Sabry;Mansour, Walid
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.319-332
    • /
    • 2020
  • The impacts of reinforcing concrete matrix with steel fibers, polypropylene fibers and recycled plastic fibers using different volume fractions of 0.15%, 0.5%, 1.5% and 2.5% on the compressive and tensile characteristics are experimentally investigated in the current research. Also, flexural behavior of plain concrete (PC) beams, shear performance of reinforced concrete (RC) beams and compressive characteristics of both PC and RC columns reinforced with recycled plastic fibers were studied. The experimental results showed that the steel fibers improved the splitting tensile strength of concrete higher than both the polypropylene fibers and recycled plastic fibers. The end-hooked steel fibers had a positive effect on the compressive strength of concrete while, the polypropylene fibers, the recycled plastic fibers and the rounded steel fibers had a negative impact. Compressive strength of end-hooked steel fiber specimen with volume fraction of 2.5% exhibited the highest value among all tested samples of 32.48 MPa, 21.83% higher than the control specimen. The ultimate load, stiffness, ductility and failure patterns of PC and RC beams in addition to PC and RC columns strengthened with recycled plastic fibers enhanced remarkably compared to non-strengthened elements. The maximum ultimate load and stiffness of RC column reinforced with recycled plastic fibers with 1.5% volume fraction improved by 21 and 15%, respectively compared to non-reinforced RC column.