• Title/Summary/Keyword: failure pattern detection

Search Result 40, Processing Time 0.022 seconds

Parity Space and Pattern Recognition Approach for Hardware Redundant System Signal Validation using Artificial Neural Networks (인공신경망을 이용하여 하드웨어 다중 센서 신호 검증을 위한 패리티 공간 및 패턴인식 방법)

  • 윤태섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.765-771
    • /
    • 1998
  • An artificial neural network(NN) technique is developed for hardware redundant sensor validation. Since the measurement space is a continuous space with many operating regions, it is difficult to train a NN to correctly detect failure in an accurate measurement system. A conventional backpropagation NN is modified to include an additional preprocessing layer that extracts classification features from scalar measurements. This feature extraction means transform the measurement space to parity space. The NN is independent of the state variable being measured, the instrument range, and the signal tolerance. This NN resembles the parity space approach to signal validation, except that analytical parity equations are unneeded and the NN pattern recognition capability is utilized for decision making.

  • PDF

Fault Symptom Analysis and Diagnosis for a Single-Effect Absorption Chiller (흡수식 냉동시스템의 고장현상 분석과 진단)

  • Han, Dongwon;Chang, Young-Soo;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.587-595
    • /
    • 2015
  • In this study, fault symptoms were simulated and analyzed for a single-effect absorption chiller. The fault patterns of fault detection parameters were tabulated using the fault symptom simulation results. Fault detection and diagnosis by a process history-based method were performed for the in-situ experiment of a single-effect absorption chiller. Simulated fault modes for the in-situ experimental study are the decreases in cooling water and chilled water mass flow rates. Five no-fault reference models for fault detection of a single-effect absorption chiller were developed using fault-free steady-state data. A sensitivity analysis of fault detection using the normalized distance method was carried out with respect to fault progress. When mass flow rates of the cooling and chilled water decrease by more than 19.3% and 17.8%, respectively, the fault can be detected using the normalized distance method, and COP reductions are 6.8% and 4.7%, respectively, compared with normal operation performance. The pattern recognition method for fault diagnosis of a single-effect absorption chiller was found to indicate each failure mode accurately.

Wafer bin map failure pattern recognition using hierarchical clustering (계층적 군집분석을 이용한 반도체 웨이퍼의 불량 및 불량 패턴 탐지)

  • Jeong, Joowon;Jung, Yoonsuh
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.407-419
    • /
    • 2022
  • The semiconductor fabrication process is complex and time-consuming. There are sometimes errors in the process, which results in defective die on the wafer bin map (WBM). We can detect the faulty WBM by finding some patterns caused by dies. When one manually seeks the failure on WBM, it takes a long time due to the enormous number of WBMs. We suggest a two-step approach to discover the probable pattern on the WBMs in this paper. The first step is to separate the normal WBMs from the defective WBMs. We adapt a hierarchical clustering for de-noising, which nicely performs this work by wisely tuning the number of minimum points and the cutting height. Once declared as a faulty WBM, then it moves to the next step. In the second step, we classify the patterns among the defective WBMs. For this purpose, we extract features from the WBM. Then machine learning algorithm classifies the pattern. We use a real WBM data set (WM-811K) released by Taiwan semiconductor manufacturing company.

Study on the real time chatter detection method during the high accurate grinding process (정밀연삭시 발생하는 채터진동 실시간 감시에 대한 연구)

  • Kim, InWoong;Lee, SunPyo;Choi, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.745-750
    • /
    • 2014
  • The chatter vibration in the machining process plays bad role in machining quality such as high roughness as well as tool life and machine failure. And the grinding process under this risk in the fully automated factory is exposed to the unexpected mass machining quality problem. Studying the vibration signal of the hub bearing grinding process, the reason of chatter vibration was explained with the specific machining pattern of chatter. And this study suggests the chatter detecting method in the production line, which is monitoring the peak acceleration level around the natural frequencies of the specimen, and calculating kurtosis value by assuming the chatter is related to the resonance of the specimen. The suggested method was applied to the vehicle hub bearing grinding process and proved good to detecting the chatter induced machining quality problem.

  • PDF

State-Monitoring Component-based Fault-tolerance Techniques for OPRoS Framework (상태감시컴포넌트를 사용한 OPRoS 프레임워크의 고장감내 기법)

  • Ahn, Hee-June;Ahn, Sang-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.780-785
    • /
    • 2010
  • The OPRoS (Open Platform for Robotic Services) framework is proposed as an application runtime environment for service robot systems. For the successful deployment of the OPRoS framework, fault tolerance support is crucial on top of its basic functionalities of lifecycle, thread and connection management. In the previous work [1] on OPRoS fault tolerance supports, we presented a framework-based fault tolerance architecture. In this paper, we extend the architecture with component-based fault tolerance techniques, which can provide more simplicity and efficiency than the pure framework-based approach. This argument is especially true for fault detection, since most faults and failure can be defined when the system cannot meet the requirement of the application functions. Specifically, the paper applies two widely-used fault detection techniques to the OPRoS framework: 'bridge component' and 'process model' component techniques for fault detection. The application details and performance of the proposed techniques are demonstrated by the same application scenario in [1]. The combination of component-based techniques with the framework-based architecture would improve the reliability of robot systems using the OPRoS framework.

The automatic recognition of the plate of vehicle using the correlation coefficient and hough transform (상관계수와 하프변환을 이용한 차량번호판 자동인식)

  • Kim, Kyoung-Min;Lee, Byung-Jin;Lyou, Kyoung;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.511-519
    • /
    • 1997
  • This paper presents the automatic recognition algorithm of the license number in on vehicle image. The proposed algorithm uses the correlation coefficient and Hough transform to detect license plate. The m/n ratio reduction is performed to save time and memory. By the correlation coefficient between the standard pattern and the target pattern, licence plate area is roughly extracted. On the extracted local area, preprocessing and binarization is performed. The Hough transform is applied to find the extract outline of the plate. If the detection fails, a smaller or a larger standard pattern is used to compute the correlation coefficient. Through this process, the license plate of different size can be extracted. Two algorithms to each separate number are proposed. One segments each number with projection-histogram, and the other segments each number with the label. After each character is separated, it is recognized by the neural network. This research overlomes the problems in conventional methods, such as the time requirement or failure in extraction of outlines which are due to the processing of the entire image, and by processing in real time, the practical application is possible.

  • PDF

A Study on the Detection of the Abnormal Tool State for Neural Network in Drilling (드릴가공시 신경망에 의한 공구 이상상태 검출에 관한 연구)

  • 신형곤;김민호;김태영;김대성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1021-1024
    • /
    • 2001
  • Out of all metal-cutting processes, the hole-making process is the most widely used. It is estimated to be more than 30% of the total metal-cutting process. It is therefore desirable to monitor and detect drill wear during the hole-drilling process. In this paper, the vision system of the sensing methods of drill flank wear on the basis of image processing is used to detect the wear pattern by non-contact and direct method and get the reliable wear information about drill. In image processing of acquired image, median filter is applied for noise removal. The vision flank wear area of the drill was measured. Backpropagation neural networks (BPns) were used for no-line detection of drill wear. The neural network consisted of three layers: input, hidden and output. The input vectors comprised of spindle rotational speed, feed rates, vision flank wear, thrust and torque signals. The output was the drill wear state which was either usable or failure. Drilling experiments with various spindle rotational speed and feed rates were carried out. The learning process was peformed effectively by utilizing backpropagation. The detection of the abnormal states using BPNs achieved 96.4% reliability even when the spindle rotational speed and feedrate were changed.

  • PDF

Fault Detection and Diagnosis Simulation for CAV AHU System (정풍량 공조시스템의 고장검출 및 진단 시뮬레이션)

  • Han, Dong-Won;Chang, Young-Soo;Kim, Seo-Young;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.687-696
    • /
    • 2010
  • In this study, FDD algorithm was developed using the normalized distance method and general pattern classifier method that can be applied to constant air volume air handling unit(CAV AHU) system. The simulation model using TRNSYS and EES was developed in order to obtain characteristic data of CAV AHU system under the normal and the faulty operation. Sensitivity analysis of fault detection was carried out with respect to fault progress. When differential pressure of mixed air filter increased by more than about 105 pascal, FDD algorithm was able to detect the fault. The return air temperature is very important measurement parameter controlling cooling capacity. Therefore, it is important to detect measurement error of the return air temperature. Measurement error of the return air temperature sensor can be detected at below $1.2^{\circ}C$ by FDD algorithm. FDD algorithm developed in this study was found to indicate each failure modes accurately.

Open Fault Diagnosis Method for Five-Phase Induction Motor Driving System (5상 유도전동기 구동 시스템을 위한 인버터의 개방고장진단 방법)

  • Baek, Seung-Koo;Shin, Hye-Ung;Kang, Seong-Yun;Park, Choon-Soo;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.304-310
    • /
    • 2016
  • This paper proposes a fault diagnosis method for an open-fault in inverter driving five-phase induction motor. The five-phase induction motor has a high output torque and small torque ripple in comparison to three-phase. The best advantage of the five-phase induction motor is fault diagnosis and tolerant control using redundancy of phases. This paper uses an inverter as a power converter for driving a five-phase induction motor. If a switch of inverter occurs to the open-fault, this problem is the influence on the output current and output torque. To solve this problem, there is need of an accurate diagnosis and fault switch distinction. Therefore, this paper propose a fault detection method of the open-fault switches for the fault diagnosis. First, analyzing the pattern for the open-circuit fault of one phase. next, analyzing the pattern for the open-circuit fault of each inverter switches. Through the pattern analysis, It defines the scope of each of the failure switch. Thereafter, By using an algorithm that proposes to perform a fault diagnosis method. The proposed algorithm is verified from the experiment with the 1.5 kW five-phase induction motor.

Novelty Detection on Web-server Log Dataset (웹서버 로그 데이터의 이상상태 탐지 기법)

  • Lee, Hwaseong;Kim, Ki Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1311-1319
    • /
    • 2019
  • Currently, the web environment is a commonly used area for sharing information and conducting business. It is becoming an attack point for external hacking targeting on personal information leakage or system failure. Conventional signature-based detection is used in cyber threat but signature-based detection has a limitation that it is difficult to detect the pattern when it is changed like polymorphism. In particular, injection attack is known to the most critical security risks based on web vulnerabilities and various variants are possible at any time. In this paper, we propose a novelty detection technique to detect abnormal state that deviates from the normal state on web-server log dataset(WSLD). The proposed method is a machine learning-based technique to detect a minor anomalous data that tends to be different from a large number of normal data after replacing strings in web-server log dataset with vectors using machine learning-based embedding algorithm.