• Title/Summary/Keyword: failure path

Search Result 353, Processing Time 0.026 seconds

A Study on Restoration of the Multi-Link Failures in BSHR/2 Networks (BSHR/2 네트워크에서의 다중 선로 장애 복구에 관한 연구)

  • Han, Seong-Taek;Lee, Yeong-Gwan;Jang, Seong-Dae;Lee, Gyun-Ha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.722-728
    • /
    • 1999
  • When one link failure happens in BSHR/2 networks, it is possible to restore all traffics by following the ITU-T G.841 rules. However, when a node that is currently executing a ring switch receives a long-path ring bridge request for an higher priority, it shall drop its bridge and switch immediately, then enter full pass-through. Even through link connection between two nodes exists, it is impossible to restore the service. In this paper, when multi-link failures happen, the services through connected link can be restored by exchanging messages through DCC(Data Communication Channel). Partially reconstructing the ring map that is unable to restore services because of multi-link failures made it possible to restore these kinds of traffic pattenrs. This paper shows that the services through connected link can be restored by using proposed method.

  • PDF

Development of non-destructive testing method to evaluate the bond quality of reinforced concrete beam

  • Saleem, Muhammad;Almakhayitah, Abdulmalik Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.313-323
    • /
    • 2020
  • Non-destructive tests are commonly used in construction industry to access the quality and strength of concrete. However, till date there is no non-destructive testing method that can be adopted to evaluate the bond condition of reinforced concrete beams. In this regard, the presented research work details the use of ultra-sonic pulse velocity test method to evaluate the bond condition of reinforced concrete beam. A detailed experimental research was conducted by testing four identical reinforced concrete beam samples. The samples were loaded in equal increments till failure and ultra-sonic pulse velocity readings were recorded along the length of the beam element. It was observed from experimentation that as the cracks developed in the sample, the ultra-sonic wave velocity reduced for the same path length. This reduction in wave velocity was used to identify the initiation, development and propagation of internal micro-cracks along the length of reinforcement. Using the developed experimental methodology, researchers were able to identify weak spots in bond along the length of the specimen. The proposed method can be adopted by engineers to access the quality of bond for steel reinforcement in beam members. This allows engineers to carryout localized repairs thereby resulting in reduction of time, cost and labor needed for strengthening. Furthermore, the methodology to apply the proposed technique in real-world along with various challenges associated with its application have also been highlighted.

Delay and Energy-Aware Routing Algorithm For Energy-Constrained Wireless Networks (무선 Ad-hoc 네트워크환경에서 전송지연과 에너지소비를 고려한 라우팅 알고리즘)

  • Casaquite, Reizel;Hwang, Won-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1799-1805
    • /
    • 2007
  • Wireless Ad-hoc networks may contain nodes of various types of which many can have limited power capabilities. A failure of a node due to energy exhaustion may impact the performance of the whole network hence, energy must be conserved. In this paper, we propose a Delay and Energy-Aware Routing (DEAR) algorithm a multiple metric path cost routing algorithm which considers not only the energy consumed by the node during transmission and reception but as well as the residual energy of the node and the delay incurred during route discovery. Based on our results, DEAR algorithm performs well and maximizes network lifetime by routing flows to nodes with sufficient energy such that the energy consumption is balanced among nodes in proportion to their energy reserves.

Buckling response of offshore pipelines under combined tension and bending

  • Gong, Shun-Feng;Ni, Xing-Yue;Yuan, Lin;Jin, Wei-Liang
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.805-822
    • /
    • 2012
  • Offshore pipelines have to withstand combined actions of tension and bending during deepwater installation, which can possibly lead to elliptical buckle and even catastrophic failure of whole pipeline. A 2D theoretical model initially proposed by Kyriakides and his co-workers which carried out buckling response analysis of elastic-plastic tubes under various load combinations, is further applied to investigate buckling behavior of offshore pipelines under combined tension and bending. In association with practical pipe-laying circumstances, two different types of loadings, i.e., bent over a rigid surface in the presence of tension, and bent freely in the presence of tension, are taken into account in present study. In order to verify the accuracy of the theoretical model, numerical simulations are implemented using a 3D finite element model within the framework of ABAQUS. Excellent agreement between the results validates the effectiveness of this theoretical method. Then, this theoretical model is used to study the effects of some important factors such as load type, loading path, geometric parameters and material properties etc. on buckling behavior of the pipes. Based upon parametric studies, a few significant conclusions are drawn, which offer a theoretical reference for design and installation monitoring of deepwater pipelines.

Initiation and propagation of a crack in the orthopedic cement of a THR using XFEM

  • Gasmi, Bachir;Abderrahmene, Sahli;Smail, Benbarek;Benaoumeur, Aour
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.295-305
    • /
    • 2019
  • The sealing cement of total hip arthroplasty is the most widely used binder in orthopedic surgery for anchoring implants to their recipient bones. Nevertheless, this latter remains a fragile material with weak mechanical properties. Inside this material cracks initiate from cavities. These cracks propagate under the effect of fatigue and lead to the failure of this binder and consequently the loosening of the prosthesis. In this context, this work consists to predict the position of cracks initiation and their propagations path using the Extended Finite Element Method (XFEM). The results show that cracks can only be initiated from a sharp edges of an ellipsoidal cavity which the ratio of the minor axis over the major axis is equal to 0.1. A maximum crack length of 19 ?m found for a cavity situated in the proximal zone position under a static loading. All cracks propagate in same(almost) way regardless of the cavity(site of initiation) position and its inclination in the proximal zone.

A Study on Target Tracking Performance Enhancement Using Lock-on Time Delay Compensation Method (추적명령 지연보상을 통한 표적추적 성능향상 방안 연구)

  • Kim, Mi-Jeong;Park, Ka-Young;Kang, Myung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.358-363
    • /
    • 2019
  • If the EOIR equipment mounted on an unmanned aircraft transmits images and receives commands through a data link, there may be delays in data transmission depending on the transmission path of the data and the conditions of the ground equipment or wireless network. This increases the possibility of initial target LOCK-ON failure due to the difference between the time when the received image is viewed and the time when the image is taken. Therefore, this paper proposed a way to use frame indexes to synchronize with images, and to increase the success of target tracking by adding frame indexes to commands from the ground station.

Experimental research on vertical mechanical performance of embedded through-penetrating steel-concrete composite joint in high-temperature gas-cooled reactor pebble-bed module

  • Zhang, Peiyao;Guo, Quanquan;Pang, Sen;Sun, Yunlun;Chen, Yan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.357-373
    • /
    • 2022
  • The high-temperature gas-cooled reactor pebble-bed module project is the first commercial Generation-IV NPP(Nuclear Power Plant) in China. A new joint is used for the vertical support of RPV(Reactor Pressure Vessel). The steel corbel is integrally embedded into the reactor-cabin wall through eight asymmetrically arranged pre-stressed high-strength bolts, achieving the different path transmission of shear force and moment. The vertical monotonic loading test of two specimens is conducted. The results show that the failure mode of the joint is bolt fracture. There is no prominent yield stage in the whole loading process. The stress of bolts is linearly distributed along the height of corbel at initial loading. As the load increases, the height of neutral axis of bolts gradually decreases. The upper and lower edges of the wall opening contact the corbel plate to restrict the rotation of the corbel. During the loading, the pre-stress of some bolts decreases. The increase of the pre-stress strength ratio of bolts has no noticeable effect on the structure stiffness, but it reduces the ultimate bearing capacity of the joint. A simplified calculation model for the elastic stage of the joint is established, and the estimation results are in good agreement with the experimental results.

Intermediate Node Mobility Management Technique by Real-Time Monitoring in CCN Environment (CCN 환경에서 실시간 모니터링에 의한 중간노드 이동성 관리 기법)

  • Ko, Seung-Beom;Kwon, Tae-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.783-790
    • /
    • 2022
  • The development of SNS and video platforms provided an opportunity to explode the activation of content production and consumption. However, in the legacy system, due to the host-based location-oriented data transmission, there are inherent limitations in efficient operation and management. As an alternative to this, a Contents Centric Network (CCN) was studied. In this paper, when intermediate nodes located between the information provider and the information requester between the real-time streaming services in the CCN environment move or restrict their use, failure through monitoring of wireless reception strength to solve problems like disconnection of transmission quality at the information consumer. We propose a stable intermediate node management mechanism through active response before occurrence.

Component-Based System Reliability using MCMC Simulation

  • ChauPattnaik, Sampa;Ray, Mitrabinda;Nayak, Mitalimadhusmita;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.79-89
    • /
    • 2022
  • To compute the mean and variance of component-based reliability software, we focused on path-based reliability analysis. System reliability depends on the transition probabilities of components within a system and reliability of the individual components as basic input parameters. The uncertainty in these parameters is estimated from the test data of the corresponding components and arises from the software architecture, failure behaviors, software growth models etc. Typically, researchers perform Monte Carlo simulations to study uncertainty. Thus, we considered a Markov chain Monte Carlo (MCMC) simulation to calculate uncertainty, as it generates random samples through sequential methods. The MCMC approach determines the input parameters from the probability distribution, and then calculates the average approximate expectations for a reliability estimation. The comparison of different techniques for uncertainty analysis helps in selecting the most suitable technique based on data requirements and reliability measures related to the number of components.

MODELING MEASURES OF RISK CORRELATION FOR QUANTITATIVE FLOAT MANAGEMENT OF CONSTRUCTION PROJECTS

  • Richard C. Jr. Thompson;Gunnar Lucko
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.459-466
    • /
    • 2013
  • Risk exists in all construction projects and resides among the collection of subcontractors and their array of individual activities. Wherever risk resides, the interrelation of participants to one another becomes paramount for the way in which risk is measured. Inherent risk becomes recognizable and quantifiable within network schedules in the form of consuming float - the flexibility to absorb delays. Allocating, owning, valuing, and expending such float in network schedules has been debated since the inception of the critical path method itself. This research investigates the foundational element of a three-part approach that examines how float can be traded as a commodity, a concept whose promise remains unfulfilled for lack of a holistic approach. The Capital Asset Pricing Model (CAPM) of financial portfolio theory, which describes the relationship between risk and expected return of individual stocks, is explored as an analogy to quantify the inherent risk of the participants in construction projects. The inherent relationship between them and their impact on overall schedule performance, defined as schedule risk -the likelihood of failing to meet schedule plans and the effect of such failure, is matched with the use of CAPM's beta component - the risk correlation measure of an individual stock to that of the entire market - to determine parallels with respect to the inner workings and risks represented by each entity or activity within a schedule. This correlation is the initial theoretical extension that is required to identify where risk resides within construction projects, allocate and commoditize it, and achieve actual tradability.

  • PDF